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1. Tetszoleges r,n > 1 egész szamok esetén jelolje P(r,n) az {1,2,...,n} halmazon definiélt
ekvivalenciareldciokbdl all6 azon (Ey, ..., E,) rendezett r-esek szamét, amelyekre £y C FEy C
.-+ C E,. Bizonyitsuk be, hogy rogzitett r esetén P(r,n) < n!, amennyiben n elég nagy.

MEGOLDAS. A feladatban emlitett sorozatok higher order Bell numbers néven ismertek, és meg-
taldlhatéak az |A144150 szdmi OEILS sorozat oszlopaiként. Jelolje E"(x) a P(r,n) sorozat exponen-
cialis generatorfiiggvényét, azaz

E"(z) = Z P(r, n):;—?:

Ismert tény (illetve ez a definicié van megadva a belinkelt OEIS oldalon is), hogy E°(x) = e és
Er(z) = P @=L Mivel az e” fiiggvény mindenhol konvergens, ebbdl kévetkezik, hogy az imént de-

finialt generatorfiiggvények is mindenhol konvergensek. Rogzitett r esetén az x = 1 értéket behelyet-
tesitve adédik, hogy a Y2 % osszeg konvergens, igy lim,, P(T’;;”) = 0. Specidlisan P(r,n) < n!

amennyiben n elég nagy. U

MEGJEGYZES. Emlitésre mélté tény, hogy a feladat dllitdsa némileg megleps lehet. Ismert és
konnyl tény, hogy a Bell-szamok n!-nal lassabban nének, ugyanakkor a magasabb rendii verziénal
hajlamosak lehetiink azt gondolni, hogy a novekedés n"™ koriil lesz, hiszen ha mindenféle megszorités
nélkiil valasztanank az ekvivalenciarelaciokat, akkor lényegében ezt kapnank, és az ember intuiciéja
azt sugallnd, hogy az, hogy lancba tessziik az ekvivalenciarelaciokat, nem csokkenti lényegesen az
esetek szamat. Mint a feladat allitdsa mutatja, ez az intuicié teljesen rossz.
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2. Legyen egy iranyitott graf szoros, ha nincs olyan k > 1 természetes szam és a graf csucsainak
¢ szinezése Zj, elemeivel, amelyre minden (a, b) él esetén c¢(b) = c(a) + 1. Igaz-e, hogy Osszefiiggd,
szoros iranyitott grafok direkt szorzata is szoros?

MEGOLDAS. A vélasz igenld.

A tovabbiakban jelolje C, a k csicsu iranyitott kort, amelynek cstucsai Zy elemei, és tetszoleges
a,b € Zy, esetén (a,b) pontosan akkor él Ci-ban, ha b = a + 1. Ezzel a jeldléssel, egy G irdnyitott
grafnak pontosan akkor van a feladat szovegében szerepld c szinezése Z;, elemeivel, ha létezik G — Cy,
homomorfizmus.

Egy irdnyitott grafbeli sétat m emelkedéstinek neveziink (m € Z), ha a séta soran hasznélt
eléremutato élek és hatramutaté élek szaménak kiilonbsége m. (A tébbszor hasznalt éleket tobbszor
szamoljunk, igy példaul Cy-ben az 1 — 2 <= 1 < 0 <= 3 + 2 — 3 < 2 séta emelkedése —3.)

1. LEMMA. Tetszéleges G irdanyitott grafra a kovetkezok ekvivalensek:

(1) Létezik G — Cy homomorfizmus,
(2) G-ben minden zdrt séta emelkedése oszthatd k-val.

A LEMMA BIZONYITASA. Mind a két feltétel akkor és csak akkor teljesiil G-re, ha teljesiil az
osszes komponensére. Ezért feltehetd, hogy G Osszefiiggo.

Az (1)=(2) irdny nyilvdnvald, a forditotthoz legyen k > 1 rogzitett, és tegyiik fel, hogy nem
létezik G — Cj homomorfizmus. Legyen gy € V(G) rogzitett, és minden g € V(G) esetén definialjuk
az A, halmazt a kovetkezé médon: Ay a go-bdl induld és g-be érkezo sétdk emelkedéseinek halmaza.
Ekkor A, a szokdsos Osszeaddsra nézve részcsoportot alkot Z-ben.

Mivel Z minden részcsoportja egy elem altal generdlt, létezik d € Z, hogy A, = (d). Legyen
g € V(G) tetszbleges, és x,y € A,. Ekkor van gy-bdl g-be z és y emelkedésii séta is. Az els6hoz
konkatendlva a masodik inverzét, egy go-bdl go-ba mend, x — y emelkedésii sétat kapunk. fgy r—y €
Ay, és d | x —y. Emiatt 1étezik ¢, € Z4, hogy minden x € A, esetén = = ¢, mod d.

A G — C4, g — ¢4 leképezés homomorfizmus. Mivel a feltevés szerint G — C;, homomorfizmus
viszont nincs, k { d. Ez d € A, miatt azt jelenti, hogy van a G-ben olyan zart séta, amelynek
emelkedése nem oszthato k-val. O

A Lemma bizonyitdsabdl a kovetkezo is kiolvashaté.

1. KOVETKEZMENY. Egqy osszefiiggd irdnyitott grdaf akkor és csak akkor szoros, ha van benne 1
emelkedésii zart séta.

Belatjuk, hogy ha az A és B grafok tartalmaznak 1 emelkedésti korsétat, akkor A x B szoros. Ezt
az A-beli korséta n 4, ezen beliil a B-beli korséta ng hosszara vonatkozé indukciéval fogjuk megtenni.
A Kovetkezmény értelmében felteheto, hogy A és B csak a korsétak éleit tartalmazzék.

Ha n4q = 1, akkor A x B izomorf B-vel, igy szoros.

Egy irdnyftott grafban nevezziik Z-sétdnak a zy — 21 + 2 — 23 alaki sétdkat, Z '-sétdnak a
20 < %1 —> Rg < 23 alaku sétakat.

1. eset: A-ban van Z-séta vagy Z !-séta. Az altalanossdg megszoritdsa nélkiil feltehetd, hogy
Z-séta van a grafban. Képezziik egy tetszéleges X irdnyitott grafbdl az X' iranyitott grafot igy, hogy
X’ és X csucshalmaza megegyezzen, és tetszéleges x1, z9 € V(X') csticsokra (z1, x2) pontosan akkor
legyen éle az X'-nek, ha X-ben létezik Z-séta x1-bél z5-be. Ekkor X részgrafja X'-nek.

Az A-ban van egy zy — 21 < 2o — z3 alaku séta, ezeket az éleket (2o, z3)-mal helyettesitve egy
A’-beli korsétat kapunk, amely ny — 2 hosszi, emelkedése pedig szintén 1.

[gy A, és az indukciés feltevés miatt A/ x B’ szorosak. Az A’ x B'-re alkalmazva a Lemmat, kapjuk,
hogy nem létezik k£ > 1 egész szam, ami tetszOleges zart sétdjanak emelkedését osztja.

Konnyen lathatd, hogy A’ xB' = (AxB)". Az A’ x B’ tetszéleges zart sétajaban, ha annak minden
élét lecseréljiik arra az A x B-beli Z-sétara, ami miatt az adott él bekeriilt (A x B)-be, egy A x B-beli,
¢és az eredetivel azonos emelkedésti zart sétahoz jutunk. fgy A x B zart sétaihoz sem létezik k > 1,
amely mindegyik emelkedését osztja, tehat A x B szoros.

2. eset: A-ban nincs sem Z-séta, sem Z !'-séta, de B-ben van valamelyik. Ez az eset
ugyanigy miikodik, mint az elézd. (Vegyiik észre, hogy A’ = A.)
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1. ABRA. Egy 1 emelkedésii kor, és a bel6le képzett 1) graf, benne a kék és zold élek
altal alkotott rovidebb, de azonos emelkedésii korsétaval.

3. eset: Sem A-ban, sem B-ben nincs sem Z-séta, sem Z !-séta. Egy irdnyitott grafban
nevezzuk N-sétanak a kovetkezd alaku sétdkat: wy — wy < wy < w3 = wy = Wws. Az el6z6 eseﬂhez
hasonlé médon képezzik egy tetszoleges X irdnyitott grafbol az X iranyitott grafot gy, hogy X és
X cstcshalmaza megegyezzen, és tetszoleges x1, 1o € V(X) csucsokra (x7, z5) pontosan akkor legyen
éle az X—nak, ha X-ben létezik N-séta x1-bdl xo-be. Ezuttal X nem feltétleniil lesz részgrafja X-nak.

Belatjuk, hogy az A grafban lesz egy 1 emelkedésti korséta, amely rovidebb na-nal. Mivel az
eredeti korséta Z- és Z~1-mentes, benne az elére-, illetve hatramutato élek legaldbb kettesével kovetik
egymast. (A korséta emelkedése 1, ezért vannak benne elére- és hatramutaté élek is.) Az A az A-nak
pontosan azokat az éleit tartalmazza, amelyek kiindulé csicsanak be-foka nem 0. Emellett még 1]
élek is megjelennek: ha A-ban két hatramutaté élt két eloremutato él kovet, vagyis: ag <— a1 < as —
as — a4, akkor A-ban (ay,a4) és (ag,ap) is él. Az ny-ndl rovidebb korséta a kovetkezd lesz A-ban:
Minden ag < a; < as — az — a4 alaka A-beli sétat cseréljiink le A-ban az ag < a; — a4 alaka
sétara, majd ezen 1j sétdkat, az eredeti sétdk sorrendjében haladva, kapcsoljuk Ossze egy korsétava
olyan A-beli élekkel, amelyek A-nak is élei voltak. A kapott korséta rovidebb ny-nal, és emelkedése
azonos az eredeti séta emelkedésével, hiszen vagy megtartottunk egy élt, vagy egy 0 emelkedésti, 2
élbol allo sétara cseréltiink egy 4 élbol allé, szintén 0 emelkedésii sétat. Tehat a kapott korséta szoros,
és legfeljebb n 4 — 2 hosszu.

/ — . f\.
| ﬁ/.

2. ABRA. Egy 1 emelkedésii kor, és a beldle képzett 1j graf, benne a kék és zold élek
altal alkotott rovidebb, de azonos emelkedésii korsétaval.

)

Ugyanigy B-ben is lesz egy legfeljebb ng — 2 hosszu, szoros korséta.

Az indukeids feltevés miatt A x B = A x B szoros. Ennek a grafnak egy zart sétdjaban minden
élt lecserélve arra az N-sétara, ami miatt az él A % B-be bekeriilt, egy A x B-beli zart sétat kapunk,
azonos emelkedéssel. fgy a Lemma felhasznalasaval ismét azt kaptuk, hogy A x B szoros. 0

MEGJEGYZES. e A feladat szdmitdstudomanyi eredetl. Egy graf algebrai hosszdinak szokés ne-
vezni a benne talalhato sétak emelkedéseinek legnagyobb kozos osztojat. A szoros szot csak mi
hasznaltuk az 1 algebrai hosszi grafokra, hogy megnehezitsiik a vonatkozd szakirodalom meg-
talalasat.

e Nem nehéz latni, hogy egy iranyitott graf algebrai hossza a komponensei algebrai hosszanak
legnagyobb kozos osztoja. fgy a feladatban nem kell feltenni, hogy a grafok osszefliggoek. Viszont
a feltétel elhagyasa csak meglehetésen érdektelen technikai nehézségeket okoz.
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3. Legyenek ay, as, as, ay olyan rogzitett pozitiv egészek, melyekre Inko(aq, as, as, as) = 1 teljesiil,
és jelolje o az Euler-féle fliggvényt. Mutassuk meg, hogy ha a

(1) p(at') + ¢(a3®) = p(az®) + ¢(ay*)

egyenletnek végtelen sok megoldasa van az xq, xs, r3, 4 nemnegativ egészekben, akkor vannak
olyan u, v pozitiv egészek, melyekkel az

u __ v u __ v u __ v u __ v
(2) ap = A3, G = Ay, Q9 = 03, (g = Uy

egyenloségek legalabb egyike teljestil!

. J

MEGOLDAS. A feladat megfogalmazésa pontatlan, ugyanis ha barmelyik a; alap értéke, mondjuk
a; = 1 és (w1, 29, w3, 14) megoldds, akkor z; értékét tetszélegesen megvélasztva végtelen sok meg-
olddshoz jutunk. Példdul, a; = 1, as = 13, a3 = 2, ag = 21 esetén (z1,1,1,1) (z; > 0) végtelen sok
megoldést ad. Az aldbbiakban elészor jellemezziik az elfajulé eseteket (ellenpéldékat), majd megadjuk
a probléma megoldasat a nemelfajuld esetekben. Ehhez két esetet kiilonboztetiink meg;:
i) valamelyik a; alap értéke 1,
ii) az a; alapok egynél nagyobb egészek.
Megemlitjiik, hogy a probléma azzal a konvenciéval is orvosolhaté lenne, hogy a; = 1 esetén z; = 1
kell, hogy teljesiiljon — de az egyszertiség kedvéért a fenti megkiilonboztetést kovetjiik.

Tegytik fel, hogy valamelyik a; értéke 1. A szimmetria miatt feltehetd, hogy a; = 1. Ekkor
sziikségképpen ¢(a3®) és p(ag*) egyike 1 kell, hogy legyen. Valéban, ha ¢(a5?) = 1, akkor az &llitéds
trividlis. Ha viszont ¢(a5?) > 1, akkor bal oldala paratlan, igy jobb oldaldnak is paratlannak kell
lennie — igy ¢(a3®) = 1, p(ay*) = 1 egyike valoban fenndll. A szimmetria miatt feltehetjiik, hogy
@(a3®) = 1. Mivel ellenpéldakat keresiink, igy as # 1, amibdl az kévetkezik, hogy vagy z3 = 0 (és
asz > 1 tetszéleges) vagy asz = 2, x3 = 1. Mindkét esetben egyenletiink a
(3) p(ag®) = p(ag’)
egyenletre egyszeriisodik. Ennek az egyenletnek végtelen sok megolddsa van (lasd példéul [2]), de
azok teljes lefrdsa reménytelen. (Példdul, ha ¢ = 2™ 4 1 Fermat-prim, akkor ¢(2™!) = ¢(q) — de azt
nem tudjuk, hogy végtelen sok Fermat-prim létezik-e.) fgy megelégedhetiink azzal, hogy ha adott
as, ay mellett z9, 24 (3) egy megoldasa, p(a3®) = 1, akkor (felidézve, hogy most a; = 1), (z, z2, 23, 24)
az megoldasa lesz, tetszoleges © > 0 esetén. Itt persze as,as, as Ugy valasztando, hogy a kért
feltételek teljesiiljenek, de (2)) ne teljesiiljon. (Egy ilyen példat fent megadtunk.) Lathat6, hogy az
osszes ellenpélda ezen a médon eléallithato.

Tegyiik most fel, hogy a; > 1 (1 < i < 4), és legyen S az ajasazay primosztéibol 4llé halmaz.
Vegyiik észre, hogy ekkor specialis esete az aldbbi egyenletnek:

(4) t181 + t252 — t383 = 1,
ahol
ll_[(l —1/p)
=2 (i=1,2,3),
l|—I(1 —1/p)
plag

tovabba s1, 5o, s3 S-egységek, azaz olyan raciondlis szdmok, melyek szamlal6ja és nevezdje csak S-beli
primosztokkal rendelkezik. Valéban, ha x, zs, x3, 74 az megolddsa, akkor s; = a;'/ay* a (4] egy
megoldasa.

Vizsgéaljuk meg, hogy el6fordulhat-e az, hogy az két kiillonboz6, mondjuk (yi,ye, ys, ys) és
(21, 22, 23, 24) megoldésa a ugyanazon (s, S2, s3) megoldasat adjal Ez azt jelentené, hogy az

—z
all/l 1

Mivel a; > 1 (1 <i < 4), igy azt kapjuk, hogy y; # z; (1 < i < 4). De akkor a fenti elsé (és masodik)
egyenloség alapjan teljesiil. fgy a tovabbiakban feltehetjiik, hogy kiilonboz6 megoldasai
kiilénboz6 megoldasait adjak. (Megjegyzés: elvi szempontbdl ez az a pont, ahol az elfajulé esetek
(ellenpéldak) belépnek.)

Ya—z4 Y2—=z2

_ Ya—24 y3—23
= ay )

— Ya—2z4
=a; ', ag .

:a4
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Az S-egység egyenletek elmélete szerint (lasd példdul [1], 131. oldal, Corollary 6.1.2), a (4)) egyenlet
csak véges sok nem elfajulé (azaz a bal oldalon eltiing részletosszeg mentes) megoldéssal rendelkezik.
fgy ha (1)) megolddsszama végtelen, akkor végtelen sok megoldés sziikségképpen (4)) elfajuld (sq, s2, s3)
megoldasahoz tartozik. A szimmetria miatt feltehetd, hogy olyan megoldasokrdl van sz, ahol ¢, =
t3s3 — azaz, szilkkségképpen

() plar’) = plas’)

végtelen sok x1,x3 esetén. Vilagos, hogy az utobbi egyenletnek csak akkor lehet végtelen sok meg-
oldéasa, ha a; és a3z primfaktorai pontosan ugyanazok, azaz ha ezek a szamok

k

ap =pdt - ptt, ag=ppt-oop

alakuak, pozitiv kitevokkel. fgy viszont az egyenletbdl

p:flal . 'pg;gl% _ p916351 . ,pisﬁk
kévetkezik. Ez viszont azzal ekvivalens, hogy z1(ayq, ..., ax) = z3(f1, ..., Bk), vagyis a;/fB; = o,/ f;
(1 <i < j < k). Emiatt vannak olyan u,v pozitiv egészek, hogy «;/8; = u/v (1 < i < k). Innen
viszont az allitas kozvetleniil adodik. O

HIVATKOZASOK.

[1] J.-H. Evertse, K. Gy6ry, Unit Equations in Diophantine Number Theory, Cambridge Studies in
Advanced Mathematics 146, Cambridge University Press, 2015.

[2] C. Pomerance, Popular values of Euler’s function, Mathematika 27 (1980), 84-89.

( \
4. Adott pozitiv k > 1 egész esetén definidljuk az (Fj,)neny k-Fibonacci sorozatot az
Fro = 0, Fpr =1, Fyp =kFypn1+ Frno (n > 2) rekurziéval. Oldjuk meg az
(6) Fp, =23

diofantikus egyenletet a (k,n,m,[) nemnegativ egészekre nézve.
. J

MEGOLDAS. A megoldédsban fontos szerepet jatszik a Lucas-sorozat fogalma.
Adott A, B egészek esetén az
uy = 0,u; = 1,u, = Aup_q + Buy_o, (n>2)

moédon definidlt w = (uy,)n>0 binér rekurziv sorozatot Lucas-sorozatnak nevezziik.

Az f(z) = 2% — Az — B polinomot az u sorozat karakterisztikus polinomjanak hivjuk. Az f gyokeit
a-val és -val jelolve, azt mondjuk, hogy az u Lucas-sorozat nem degenerdlt, ha AB # 0 és o/ nem
egységgyok. Az u Lucas-sorozatot valdsnak nevezzik, ha a és 8 valés szamok.

A megoldas egyik {6 eszkoze Carmichael egy klasszikus tétele (1d. [3], Theorem XXIII), amely
nem degeneralt Lucas-sorozatok primitiv primosztéival kapcsolatos. Adott u Lucas-sorozat esetén
azt mondjuk, hogy egy p prim primitiv primosztoja u,-nek, ha

plu, és plfugug:--u, 1.

1. TETEL (Carmichael-tétel). Legyen u,, egy nem degenerdlt, valds Lucas-sorozat. Han # 1,2,6,
akkor u,-nek van primitiv primosztoja, kivéve, ha

n=12, a+ =1, aff = —1.

Carmichael fenti tétele azt éllitja tehdt, hogy bizonyos feltételek mellett az u,-nek mindig van
primitiv primosztéja, kivéve a Fibonacci-sorozat 12. tagjat.
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Legyen (Fj,)n>0 a feladatban szerepld k-Fibonacci sorozat. Vegytik észre, hogy az (Fj . )n>0
sorozat k = 1 esetén éppen a (klasszikus) Fibonacci-sorozatot adja vissza. Tovabba (Fy, ,,)n>0 minden
rogzitett k > 1l-re egy nem degenerdlt, valés Lucas-sorozat. Valoban, mivel az (Fj,)n,>0 sorozat
karakterisztikus polinomja éppen f(z) = 2? — kx — 1, ezért k > 1 miatt AB = k-1 # 0. Tovabb4,

E+vVEk24+4 4 _ k=Vk244
T s =

mivel az f gyokei o = =5 ezért ezek minden k > 1 esetén valdsak és az is

konnyen ellenérizhetd, hogy a # +0, azaz feltehetd, hogy /5 nem egységgyok.

Ha n = 0, akkor Fy, = Fio = 0 és ezért a @ egyenlet nem &allhat fenn, hiszen ekkor a @ bal
oldala 0, mig jobb oldala m > 0,1 > 0 miatt, 23! > 0. Ezért a tovdbbiakban feltehetd, hogy n > 1.

Mivel az (Fjn)n>0 sorozat masodik, harmadik és negyedik tagja éppen
Foo=k, Frs=k +1, Fq=k(k*+2),
ezért konnyen latszik, hogy Fy, o, Iy 3, I}, 4 koziil legalabb az egyik biztosan péros, és legaldbb az egyik
biztosan oszthatd 3-mal. Igy, ha a @ egyenlet fenndll, azaz Fy,, = 2™3!, akkor ez azt jelenti, hogy
barmely n > 5 esetén az Fj,, tagnak nincs primitiv primosztéja (hiszen a 2 és 3 primek kordbban mar
fellépnek). Mdasrészt viszont, az (Fj,,)n>0 sorozat egy valds, nem degeneralt Lucas-sorozat. Ezért, ha
n # 1,2,6, akkor a Carmichael-tétel értelmében Fj ,-nek mindig van primitiv primosztéja, kivéve a
k =1 ésn = 12 esetet. Ez azt jelenti tehat, hogy az n € {1,2,3,4,6} és (k = 1,n = 12) esetektdl
eltekintve a @ egyenletnek nem lehet megoldésa.

A megoldds hatralévo részében a még fennmaradé n € {1,2,3,4,6} és (k = 1,n = 12) esetekkel
foglalkozunk.

Vegyiik észre, hogy k = 1,n = 12 esetén azt kapjuk, hogy F 12 = 144 = 2*-3% ami a (k,n,m,[) =
(1,12, 4,2) megoldast eredményezi.

Végiil tekintsiik az n € {1,2,3,4,6} eseteket. Ha most n = 1, akkor () nyilvén csak m =1 =0
mellett dllhat fenn. Ez adja a (k,n,m,l) = (k,1,0,0), k € Z>, parametrikus megolddscsaladot.

Ha n = 2, akkor a (6] egyenlet a k = 2m3! alakot 6lti, ami a (k,n,m,l) = (2™3",2,m,l), m €
Z>o,l € Z>o kétparaméteres megoldascsalddra vezet.

Ha n = 3, akkor a (€] egyenlet a k? + 1 = 2™3! alakot 6lti. Vildgos, hogy egy k* + 1 alaki egész
nem lehet oszthaté 3-mal, és ezért sziikségképpen [ = 0. Tovabb4, az is nyilvanvald, hogy k% + 1 vagy
pédratlan vagy pedig paros, de nem oszthaté 4-gyel. Ezek alapjan azt kapjuk, hogy k? +1 = 1, ami
ellentmondés, vagy pedig k2 + 1 = 2, ami k = l-re vezet. Igy a @ egyenlet n = 3-nak megfelelo
egyetlen megoldésa: (k,n,m,l) = (1,3,1,0).

Ha n = 6, akkor a () egyenlet a k(k* 4+ 1)(k? + 3) = 2™3' alakot olti. Mivel £ + 1 nem oszthaté
3-mal és 4-gyel sem, ezért sziikségképpen k2 + 1 = 2 teljesiil, amibdl k = 1 jon. Igy a @ egyenlet
n = 6-nak megfelelé egyetlen megoldasa: (k,n,m,l) = (1,6,3,0).

Végiil tegyiik fel, hogy n = 4. Ekkor a (6] egyenlet a k(k? + 2) = 23" alakot 6lti. Ha most 3 | k
és k paratlan, akkor 3 1 k% +2 és k? + 2 paratlan. Ekkor sziikségképpen k? +2 = 1, ami ellentmondss.
Legyen most 3 | k és k pdros. Ekkor 3 1 k* +2 és k* + 2 = 2 (mod 4). Ezért k* + 2 = 2, ami
szintén ellentmondds. Tegytik fel, hogy 3 1 k és k paratlan. Ekkor sziikségképpen m = 0,k = 1 és
3=k*+2=3" amia (k,n,m,l) = (1,4,0,1) megoldést szolgaltatja. Végiil, tegyiik fel, hogy 3 { k és
k paros. Ekkor k2 +2 =2 (mod 4) és 3' | k% + 2 miatt, azt kapjuk, hogy k = 2™t és k? +2 =2- 3%
Ez pedig a 2273 + 1 = 3! egyenletre vezet. Ezért, a Catalan-egyenletre vonatkozé ismereteink miatt
azt kapjuk, hogy 2m — 3 = 1,1 = 1 vagy 2m — 3 = 3,1 = 2. Ezért ebben az alesetben az aldbbi
megolddsok adédnak: (k,n,m,l) = (2,4,2,1) és (k,n,m,l) = (4,4, 3,2).

A feladat megoldasat befejeztiik. O

HIVATKOZASOK.

[3] R. D. Carmichael, On the numerical factors of the arithmetic forms o™ + 5", Ann. of Math. (2)
15 (1913/14), no. 1-4, 49-70.
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( )
5. Mely m > 2 természetes szamokra vannak olyan 0 < ny < ny < --- < n,, természetes szamok
és olyan a, b pozitiv szamok, amelyre a

njp1—1
Y (a+kb), j=1,...,m-1
k=n;
osszegek mind egyenlok?
. J

MEGOLDAS. A valasz: m = 2,3. Példdul a 4 + 5 + 6 = 7 + 8 egyenléség mutatja, hogy m = 3
megfelel6. Megmutatjuk, hogy m = 4 mar nem lehetséges.

Tegyiik fel, hogy m = 4-re léteznek a fenti szamok és sorozat. 1/b-vel végigszorozva a sorozat
tagjait, felteheto, hogy a sorozat altalanos tagja a + k alaki. Az

k-1

k(k—1 k> 1
Sk = E (a+j):%+ak—?+(a—§)k
j=0

osszegekkel tehdt az S,,,, — S, kiilonbségek mind egyenlék. Ha « irracionalis, akkor ez csak tgy
lehetséges, ha az n;1; — n; kilonbségek is egyenldk, de akkor

1

1
= Sp; = S (1 — ng) (g +ny) + (g — ny) (Oé - 5)

s ;=5

nj+1

nem lehetnek egyenldk (ezek mind kiilonbozoek).
Tehat o racionalis, igy o — 1/2 = p/q valamilyen p, q egészekkel, ¢ > 0. De akkor az S,, ., — Sy,
kiilonbségek egyenldsége miatt azt kapjuk, hogy a

2¢°Sy +p* = (kq+p)?,  k=mni,n9,n3,m4

négyzetszamok szamtani sorozatot alkotnak, marpedig Euler tétele szerint nincs négytag,
négyzetszamokbol &ll6 szamtani sorozat (1d. pl. [4]), és ez az ellentmondas igazolja, hogy m > 4
nem lehetséges. 0

HIVATKOZASOK.

[4] T.C. Brown, A.R. Freedman, and P. J.-S. Shiue, Progressions of squares, Australas. J. Combin.
27 (2004), 187-192.

6. Legyen n adott természetes szdm. Egy P(z2) = 1+ 2z + ag2* + - -+ + a,2" (a, # 0) polinomra
jelolje 0p a P zérushelyei abszolit értékeinek a legkisebbikét. Hatdrozzuk meg a supp dp szamot,
ahol a szuprémumot a fenti alakii polinomokra képezziik.

MEGOLDAS. Legyenek z1,...,2, a zérushelyek. Mivel [[;z; = (=1)"/a, é >, T[;z; 2
(=)™ a,, a

— =1
— Zj
P

egyenloség addédik, amibol
1
22!
|2
j

Madsrészt a bal oldali Osszeg legfeljebb n/dp, ezért dp < n adddik. A (z/n + 1)" polinom mutatja,
hogy itt egyenloség érhetd el, tehat a kérdéses szuprémum n. 0



( )
7. Igazoljuk, hogy egy ay, ..., a, valos sorozatra az aldbbi két allitas ekvivalens.

a) Valamely L konstansra teljesiil az, hogy ha {c;}&_; egy tetszbleges véges valds sorozat és
by = crap + ck—1a1 + - - + Ch_nGn, k=1,...,N+n
(ahol ¢; =0, ha j <0 vagy j > N), akkor

2
o
3

|

Mz
wlw

k=1

B
Il

1

b) A P(z) = >;_, ax2" polinomnak nincs zérushelye az egységkoron.
. J

MEGOLDAS. Vegyiik észre, hogy a feladat dtfogalmazhaté fuggvénytani problémdva. Legyen

ugyanis
N-1
Z k
= Ck+1 Z,
k=0

D az egységkorlap és dA a teriiletmérték. Ekkor

D k=1 k
mig
N+n—1
FEP()= ) bept,
k=0
és
N+n 2
Pl?dA =7 &
[ 1r >3

Tehat valdjaban azt kell igazolni, hogy az, hogy létezik L gy, hogy tetszéleges f valds polinom esetén

/ fRdA<L / FPPdA,
D D

az ekvivalens azzal, hogy a P polinomnak nincs zérushelye az egységkoron.

El6szor tegyiik fel, hogy P-nek nincs zérushelye az egységkoron, és legyen 6 a P zérushelyei és az
egységkor kozotti tavolsagok legkisebbike. Tekintsitk a Dy = {z | 1 — §/2 < |z| < 1} korgytirit. Ha
P foka n és a féegytitthatéja a, akkor nyilvénvaléan

| ()I_‘ ’(5/2> [f(2)P(2)]

a Dy korgytirlin, ezért elegendd igazolni, hogy valamilyen ) konstanssal

[ ipaasc [ iaa
|z|<1-6/2 Do
A Cauchy-formula szerint ha 1—6/4 < R < 1, és Cg jeldli a 0 koriili R sugari kort, akkor |z| < 1—4§/2

esetén
o] i
1< 0 | F e < s [ @

és igy a Jensen-egyenlotlenség szerint

PR < g [, Ol

amibol .
[ raas g [
|2 <1-6/2
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adddik. Ha ezt az egyenlétlenséget megszorozzuk R-rel és R szerint integraljuk az (1 — /4, 1) inter-

vallumon, akkor

1—(1-6/4)? 8

OB [ paas< [ irpaa,
|z|[<1-6/2 Do

tehat
16

S G (R V)P

egy alkalmas konstans.

A mésik irdnyhoz tegyiik fel, hogy zo a P(z) egy gyoke az egységkoron, és legyen

(5 (5

valamilyen nagy M természetes szamra. Ekkor |f|-nek a z; pontban szigori maximuma van az
egységkoron és a zg barmely kornyezetén kiviili pontjaiban a D-nek |f(z)| exponencidlisan kicsi M-
ben. Indirekt médon tegyiik fel, hogy létezik az a) pontban egy megfelelé L konstans. Vélasszuk
zp-nak egy olyan U kornyezetét, amelyen |P| < 1/(2L). Ertelemszertien, U, az U-nak az x tengelyre
vett tiikorképe, ugyanilyen kornyezete lesz Zp-nak. Ekkor

1
/ |f|?dA < / |f|?dA < L/ |fP|PdA< L (Ke_CM + —/ \f|2dA) :
vuu D D 2L Juur
valamilyen M-t6] fliggetlen K > 0, és ¢ > 0 konstanssal. Ebbdl pedig

/ |fIPdA < 2LKe™M
Uuu

addédik. Azonban ez nagy M-re nem lehet igaz, hiszen a zp-nak az 1/(2M) sugari kornyezetében
|f(2)] > 1/2 (vegyiik észre, hogy f derivaltjanak abszolit értéke legfeljebb M /2 a D korlapon), ezért
a bal oldal legaldbb 1/M? nagysigrendii. Ez az ellentmondds igazolja, hogy semmilyen, a b) pontbeli
feltételeket teljesito P polinomhoz sincs megfelel6 L. 0

( )
8. Legyen adott 0 < D < 1/2és0 < a < 1. Igazoljuk, hogy létezik véges sok, 1 szerint periodikus,
R-en értelmezett, egynél nem nagyobb abszolut értéki g, ..., gq Lipschitz-fliggvény és egy D-t0l
fiiggetlen pozitiv C' konstans, hogy minden z,y € R-re, ha D < |z —y| < 1/2, akkor 1étezik olyan

i € {1,...,d}, amelyre

Z 37k g, (3%z) — Z 37 kg, (3Fy)| > C.
k=0 k=0

MEGOLDAS. Az elsé 1épésben egy segédallitast igazolunk.

2. LEMMA. Tegyiik fel, hogy 0 < o < 1. Tetszoleges x,y € R esetén létezik 6, > 0, amely x ésy
fuiggvénye, valamint eqy 1 szerint periodikus R-en értelmezett Lipschitz-fligguény g, amelyre minden
(u,v) € B(x,0,4)xB(y,6,,) esetén

1-3
-

(7) > " 37heg(3ku) = ) "3 7Rg(3R0)| > C:



10

A LEMMA BIZONYITASA. Legyen S!, az egységkor azonositva R-el modulo 1, és x,y € S! esetén
a rovidebb korivvel mért tdvolsdgot jelolje |z — y|, ha z,y € R és 1/2 > |z — y|, akkor ez megegyezik
a kozonséges R-beli tavolsdggal.

Valasszuk meg N-et ugy, hogy

® 533 1—3”

k=N

Késobb valasztunk egy alkalmas dp > 0 értéket. Ugy definidljuk g¢-t, hogy ¢(z) = 1 minden
z € B(x,d) esetén, tovabba g(z) = 0, ha z ¢ B(z,2dy), és g szakaszonként linedris és folytonos
fiiggvény S'-en.

Legyen Ty(z) = {3z} = 3z mod 1, tovabba T9(z) = x és To ™ (x) = T3(T¥(2)).

Elészor tegyiik fel, hogy T¥(y) # = minden k-ra. Ekkor létezik olyan dy > 0, hogy T¥(B(y, dg)) N
B(x,20p) = 0 minden k£ =0,1,..., N — 1 esetén. Legyen 9, , := do.

Ekkor minden v € B(y, d,,)-ra teljesiil, hogy

 aka ok k(o -3

9) > 3TgEM) = Y 3Th(M) < ———

k=0 k=N

illetve minden u € B(zx,d,,) esetén

(10) > 37heg(3ku) > 3709 (3%) = 1,

ami a (7)) egyenlétlenséget eredményezi.
Most tételezziik fel, hogy létezik olyan ky > 1, hogy

(11) T (y) =2, de TFy)#xz k=0,..k — 1.
Valasszuk dy > 0-t gy, hogy {T¥(y) ],20:_01 N B(x,20p) = (. Ekkor

ko—1

ig—kag(gk 23 ka Sk +3" koaz?) ko Sk — 3~ kanS ko 3k
k=0

hiszen g(3*y) = 0 az elsd ko — 1 1épésben. Mivel > 72 37%g(3%z) > 1, ezért

Z 3—kag(3k‘x) _ Zg—k‘ag(gky) Z 1 . 3—k00¢ Z 1 _ 3—a
k=0 k=0

A D2, 377 g(3 ) folytonossdga alapjén elegendden kicsiny 4., > O-ra minden (u,v) € B(x, d,,) ¥
B(y,d,.,) esetén a (7)) egyenl6tlenség fennall. O

A FELADAT MEGOLDASA: Mivel H = {(z,y) € S! x §' : |z — y| > D} kompakt halmaz,
igy a lemma alapjan fedheté véges sok nyilt halmazzal és valaszthatunk alkalmas ¢;, ¢ = 1,...,d,
fiiggvényeket gy, hogy barmely (x,y) € H-ra megfelel6 g;-re a egyenlotlenség teljesiiljon. 0

'd )
9. Legyenek \, pu € (0, 1) konstansok, I C R egy nemiires nyilt intervallum, és legyen f: I — R egy
nemkonstans alulrél félig folytonos, p: I — R pedig egy tetszoleges pozitiv fiiggvény. Igazoljuk,

hogy az
(AP(U)U +(1- /\)p(v)v) < ) f(u) + (0 = pp() f(v)

)
Ap(u) + (1 = A)p(v) pp(u) + (1 — p)p(v)
egyenlttlenség akkor és csak akkor teljesiil minden u, v € I esetén, ha f konvex [-n és A = p.
. J

MEGOLDAS. Az elsd 1épésben egy segédallitdst igazolunk.
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3. LEMMA. Legyenek a, B3 : I? —]0, 1] olyan fiigguények, amelyekre teljesiil

(12) (a(u,v) = B(u, v)) (a(v,u) — B(v,u)) >0 (u,v € I).
Legyen f - I — R alulrol félig folytonos fiigguény, melyre
(13) fla(u,v)u+ (1 —a(u,v))v) < Bu,v)f(u) + (1 = Bu,v)) f(v)

minden u,v € I esetén. Ekkor f konvez.

A LEMMA BIZONYITASA. Ha f nem konvex I-n, akkor az [5] cikk 2.1. Tétele szerint szerint
vannak olyan u < v I-beli elemek, hogy

tf(u)+ (1 —t)f(v) < f(tu+ (1 —t)v) (t €]0,1]).
Alkalmazzuk ezt az egyenlétlenséget a t := a(u,v) és t := 1 — a(v,u) helyettesitésekkel. Ekkor az
f-re teljestil . fliggvényegyenlGtlenség szerint

au,v)f(u) + (1 = a(u, v)) f(v)

~—

< flo(u, v)u + (1 — a(u,v))v
< B(u,v) f(u) + (1 = B(u,v))
(1 —a(v,u))f(u) + a(v,u)f(v) < f((1 = a(v,u))u+ a(v,u)v

< (1 =8, u)f(u) + B(v,u)

&h

u (v),
(

~ —

(v).
Ezekbol kovetkezik, hogy

Tehat
la(u,v) = B(u, v)][a(v,u) = Blv, w)][f(v) — f(w)]* <0,
ami ellentmond az «, § fiiggvényekre vonatkozd egyenlotlenségnek. 0

Alkalmazzuk most a fenti Lemmét az aldbbiak szerint értelmezett o, 8 : I? — 10, 1] fiiggvényekkel:

Ap(u) Blu, v) = pip(w)

) = ) + (0 - W) () + (1= m)p(v)’
Ekkor
alu,v) — B(u,v) = S bpp)
| = T D) + (= Np(o)lep(w) + (1= pp(0)]
Igy

[a(u,v) — B(u,v)][a(v,u) — B(v,u)] >0 (u,v €1).
Tehat a Lemma alapjan f konvex kell legyen.

Ha f konstans, akkor nincs mit bizonyitanunk. Feltehetjiik tehét, hogy f egy nemkonstans konvex
fiiggvény. Ekkor I valamely J nyilt részintervalluman szigorian monoton. Megmutatjuk, hogy 1étezik
egy olyan u € J pont, ahol f differencidlhatd, és léteznek olyan u-hoz konvergal6 v, < u és u < w,
sorozatok, hogy p(v,) — p(u) és p(w,) — p(u), ha n — oc.

Mivel f konvex J-n, ezért differencidlhatdo J Osszes pontjaban kivéve egy T legfeljebb
megszamlalhaté halmazt, tovabba f'(u) # 0, ha f differencidlhaté u-ban. Tegyiik fel, hogy T =
{t1,ta,...} és értelmezziik a p* : I — R fiiggvényt igy:

o (t) i {p(t) hate J\T,

k hat:tk.

Tehat p* ,szétzilalja” p-t a T halmazon. Blumberg 1922-es tétele szerint létezik olyan S C J sirt

halmaz, hogy p*|s folytonos S-en. Ekkor S C T nem teljesiilhet! Tehat 1étezik u € S\ T. S6t 1étezik

olyan § > 0, hogy Ju — 0,u +0[NSNT = 0. [gy p és p* megegyezik Ju — &, u + 0[N S-en. Legyenek

U, Wy € Ju — §,u + J[NS olyan sorozatok, hogy v, < u, u < w, és v, = u, w, — u, ha n — oo.
Ertelmezziik most az F, : J — R fiiggvényt az aldbbi képlettel:

pp(u)f(w) + (1= wp()f(v) , (Apwu+ (1= Npw)v )
pp(u) + (1= p)p(v) < Ap(u) + (1= \)p(v) ) (veJ).

F,(v) =
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Ekkor a feladat feltétele szerint Fi,-nak v = u-ban minimuma van, igy a fentebb megkonstruélt (v,),
(wy,) sorozatokkal teljesiil, hogy

Fu(u) =0 < F,(v,), F,(u) =0 < F,(w,) (n € N).
Egyszerti algebrai atalakitassal kapjuk, hogy
(1 = p)p(v,) ) ) — flu
a(a) + (1 — pploy) 0 )
Ap(w)u+ (1 = A)p(va)v) "
(R ) T = aptdtoe—)
Ap(wu + (1 = A)p(va)vn " Ap(u) + (1= N)p(v,)
Ap(u) + (1 = A)p(vn)
Ezért az f fiiggvény u-beli differencidlhatésiga és a p(v,) — p(v) konvergencia miatt
0> Jim P - (1 ) - (-7 @) = - )

A (w,,) sorozat alkalmazdsaval hasonlé médon adddik, hogy (A — u) f'(u) > 0. Mivel f'(u) # 0, ezért
ezekbdl az egyenlotlenségekbdl A = i kovetkezik. U

Fu(v,) =

HIVATKOZASOK.

[5] Z. Dardczy and Zs. Pales, A characterization of nonconvezity and its applications in the theory
of quasi-arithmetic means, Inequalities and Applications (Noszvaj, 2007) (Basel) (C. Bandle,
A. Gildnyi, L. Losonczi, M. Plum, and Zs. Pdles, eds.), Internat. Ser. Numer. Math., vol. 157,
Birkhéauser, 2009, p. 251-260. MR, 2758986 (2012b:26028)

10. Legyenek N és M rogzitett pozitiv egész szamok, N > M, A = M/N. Legyen P olyan
valdészintiség a (0, 1] x (0, 1] egységnégyzeten, melynek margindlis eloszlasfiiggvényei: F, a (0, 1]-
en egyenletes eloszlas, F, pedig teljesiti az F,(y2)—F, (y1) < (y2—v1)/A, 11 < ys feltételt. Minden k
pozitiv egészre jelélje F*) az olyan [0, 1]-re koncentrélt eloszlasok F'®) eloszlasfiiggvényeinek hal-
mazat, melyek képe folytonos torottvonal és barmely [kLN, ?—]\H intervallumon F* vagy konstans,
vagy pedig 1/ meredekségli egyenes, i = 0,1,2,.... Igazoljuk, hogy létezik a (0,1] x (0, 1]-re
koncentralt P®) valészintiségeknek egy olyan sorozata, melyek a valészintiségi mértékek gyen-
ge konvergencidjanak értelmében P-hez konvergalnak, és melyek marginalis eloszlasfiiggvényeire

igaz, hogy P a (0, 1]-en egyenletes eloszlas és Fé’“ ceF® k=12,....

MEGOLDAS. Legyen F a P eloszldsfiiggvénye. Legyen x; = i/M az F, eloszlds i/M-kvantilise,
y; pedig az F, eloszlas i/M-kvantilise, i = 0,1,..., M. Vélaszthaté o = yo = 0 és 3y = yy = 1.
Legyen

R = (wi—1, 23] X (yj-1, 5], ,j=1,2,..., M.
Nevezzik a
G; = (0,1 x (yj-1,y]] = U Ry,  j=1,2,....M
téglalapokat sziirke sdvoknak. Lathatjuk, hogy P(G;) =1/M, j=1,2,..., M.

Most vegylik fel a fiiggoleges tengelyen a 0, %, N -+ 1 osztopontokat. Vélasszuk meg az [y, ..., [y
egészeket tigy, hogy Z; = % és Z; = lj]f jeloléssel a (Z;, Z;] intervallum tartalmazza az y; értéket
(7 = 1,2,...,M). Mivel az F, meredeksége legfeljebb 1/\ = N/M, igy kiilonbozé j értékekre a
(£, Z;] intervallumok diszjunktak.

A

B; = (0,1] x (Z;,Z;], j=1,2,...,.M

téglalapokat fekete savoknak nevezziik. A

Wj = (07 1] X (Zj—la A

_j]7
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téglalapokat pedig fehér sdvoknak nevezziik. Néhany W, tires halmaz lehet. A fehér és fekete sdvok
egyiittesen az egységnégyzet egy felosztasat adjak. Minden egyes sziirke sav mértékét at fogjuk
mozgatni a megfeleld fekete savba tigy, hogy a fehér sdvok mértéke 0 lesz.

Definigljuk a P valészinliséget az egységnégyzeten. Legyen P egyenletes az (zio1, 5] X (Z;,
téglalapon ugy, hogy legyen

P ((mim1, 2] x (Z;,25]) = P (i1, 2] x (yj-1,5])

minden ¢ és j esetén. Ezzel P definiélt a fekete sdvokon. Legyen a P-mértéke minden fehér sdvnak
0. Legyen F a P eloszlasfuggvenye legyenek F, és F a margindlis eloszldsfiiggvényei. Ekkor F
egyenletes eloszlas a (0, 1]-en, Fy pedig a (0, 1]-re koncentrélt eloszlds eloszlasfiiggvénye, folytonos
torottvonal, és a fehér sdévok mentén konstans, a fekete sdvok mentén pedig 1/A = N/M meredekségii.
Lathat6, hogy a oco-tavolsdgra: ||F — F||oe < 2/M.

Végezzik el a fenti procedirat M és N helyett kM és kN-re, k = A kapott ﬁ(k)
valoszintiségek marginalis eloszlasfliggvényeire igaz: £ a (0, 1]-en egyenletes eloszlas és F ) e F®)
k=1,2,..., tovabba ||F — F®) | < 2. 0

Zj]



