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1. Tetszőleges r, n ≥ 1 egész számok esetén jelölje P (r, n) az {1, 2, . . . , n} halmazon definiált
ekvivalenciarelációkból álló azon (E1, . . . , Er) rendezett r-esek számát, amelyekre E1 ⊆ E2 ⊆
· · · ⊆ Er. Bizonýıtsuk be, hogy rögźıtett r esetén P (r, n) < n!, amennyiben n elég nagy.

Megoldás. A feladatban emĺıtett sorozatok higher order Bell numbers néven ismertek, és meg-
találhatóak az A144150 számú OEIS sorozat oszlopaiként. Jelölje Er(x) a P (r, n) sorozat exponen-
ciális generátorfüggvényét, azaz

Er(x) :=
∞∑
n=0

P (r, n)
xn

n!
.

Ismert tény (illetve ez a defińıció van megadva a belinkelt OEIS oldalon is), hogy E0(x) = ex és
Er+1(x) = eE

r(x)−1. Mivel az ex függvény mindenhol konvergens, ebből következik, hogy az imént de-
finiált generátorfüggvények is mindenhol konvergensek. Rögźıtett r esetén az x = 1 értéket behelyet-

teśıtve adódik, hogy a
∑∞

n=0
P (r,n)

n!
összeg konvergens, ı́gy limn→∞

P (r,n)
n!

= 0. Speciálisan P (r, n) < n!
amennyiben n elég nagy. □

Megjegyzés. Emĺıtésre méltó tény, hogy a feladat álĺıtása némileg meglepő lehet. Ismert és
könnyű tény, hogy a Bell-számok n!-nál lassabban nőnek, ugyanakkor a magasabb rendű verziónál
hajlamosak lehetünk azt gondolni, hogy a növekedés nrn körül lesz, hiszen ha mindenféle megszoŕıtás
nélkül választanánk az ekvivalenciarelációkat, akkor lényegében ezt kapnánk, és az ember intúıciója
azt sugallná, hogy az, hogy láncba tesszük az ekvivalenciarelációkat, nem csökkenti lényegesen az
esetek számát. Mint a feladat álĺıtása mutatja, ez az intúıció teljesen rossz.
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2. Legyen egy iránýıtott gráf szoros, ha nincs olyan k > 1 természetes szám és a gráf csúcsainak
c sźınezése Zk elemeivel, amelyre minden (a, b) él esetén c(b) = c(a) + 1. Igaz-e, hogy összefüggő,
szoros iránýıtott gráfok direkt szorzata is szoros?

Megoldás. A válasz igenlő.
A továbbiakban jelölje Ck a k csúcsú iránýıtott kört, amelynek csúcsai Zk elemei, és tetszőleges

a, b ∈ Zk esetén (a, b) pontosan akkor él Ck-ban, ha b = a + 1. Ezzel a jelöléssel, egy G iránýıtott
gráfnak pontosan akkor van a feladat szövegében szereplő c sźınezése Zk elemeivel, ha létezik G→ Ck

homomorfizmus.
Egy iránýıtott gráfbeli sétát m emelkedésűnek nevezünk (m ∈ Z), ha a séta során használt

előremutató élek és hátramutató élek számának különbsége m. (A többször használt éleket többször
számoljunk, ı́gy például C4-ben az 1→ 2← 1← 0← 3← 2→ 3← 2 séta emelkedése −3.)

1. Lemma. Tetszőleges G iránýıtott gráfra a következők ekvivalensek:

(1) Létezik G→ Ck homomorfizmus,
(2) G-ben minden zárt séta emelkedése osztható k-val.

A Lemma bizonýıtása. Mind a két feltétel akkor és csak akkor teljesül G-re, ha teljesül az
összes komponensére. Ezért feltehető, hogy G összefüggő.

Az (1)⇒(2) irány nyilvánvaló, a ford́ıtotthoz legyen k > 1 rögźıtett, és tegyük fel, hogy nem
létezik G→ Ck homomorfizmus. Legyen g0 ∈ V (G) rögźıtett, és minden g ∈ V (G) esetén definiáljuk
az Ag halmazt a következő módon: Ag a g0-ból induló és g-be érkező séták emelkedéseinek halmaza.
Ekkor Ag0 a szokásos összeadásra nézve részcsoportot alkot Z-ben.

Mivel Z minden részcsoportja egy elem által generált, létezik d ∈ Z, hogy Ag0 = ⟨d⟩. Legyen
g ∈ V (G) tetszőleges, és x, y ∈ Ag. Ekkor van g0-ból g-be x és y emelkedésű séta is. Az elsőhöz

konkatenálva a második inverzét, egy g0-ból g0-ba menő, x− y emelkedésű sétát kapunk. Így x− y ∈
Ag0 , és d | x− y. Emiatt létezik cg ∈ Zd, hogy minden x ∈ Ag esetén x ≡ cg mod d.

A G → Cd, g 7→ cg leképezés homomorfizmus. Mivel a feltevés szerint G → Ck homomorfizmus
viszont nincs, k ∤ d. Ez d ∈ Ag0 miatt azt jelenti, hogy van a G-ben olyan zárt séta, amelynek
emelkedése nem osztható k-val. □

A Lemma bizonýıtásából a következő is kiolvasható.

1. Következmény. Egy összefüggő iránýıtott gráf akkor és csak akkor szoros, ha van benne 1
emelkedésű zárt séta.

Belátjuk, hogy ha az A és B gráfok tartalmaznak 1 emelkedésű körsétát, akkor A×B szoros. Ezt
az A-beli körséta nA, ezen belül a B-beli körséta nB hosszára vonatkozó indukcióval fogjuk megtenni.
A Következmény értelmében feltehető, hogy A és B csak a körséták éleit tartalmazzák.

Ha nA = 1, akkor A× B izomorf B-vel, ı́gy szoros.
Egy iránýıtott gráfban nevezzük Z-sétának a z0 → z1 ← z2 → z3 alakú sétákat, Z−1-sétának a

z0 ← z1 → z2 ← z3 alakú sétákat.
1. eset: A-ban van Z-séta vagy Z−1-séta. Az általánosság megszoŕıtása nélkül feltehető, hogy

Z-séta van a gráfban. Képezzük egy tetszőleges X iránýıtott gráfból az X′ iránýıtott gráfot úgy, hogy
X′ és X csúcshalmaza megegyezzen, és tetszőleges x1, x2 ∈ V (X′) csúcsokra (x1, x2) pontosan akkor
legyen éle az X′-nek, ha X-ben létezik Z-séta x1-ből x2-be. Ekkor X részgráfja X′-nek.

Az A-ban van egy z0 → z1 ← z2 → z3 alakú séta, ezeket az éleket (z0, z3)-mal helyetteśıtve egy
A′-beli körsétát kapunk, amely nA − 2 hosszú, emelkedése pedig szintén 1.

Így A′, és az indukciós feltevés miatt A′×B′ szorosak. Az A′×B′-re alkalmazva a Lemmát, kapjuk,
hogy nem létezik k > 1 egész szám, ami tetszőleges zárt sétájának emelkedését osztja.

Könnyen látható, hogy A′×B′ = (A×B)′. Az A′×B′ tetszőleges zárt sétájában, ha annak minden
élét lecseréljük arra az A×B-beli Z-sétára, ami miatt az adott él bekerült (A×B)′-be, egy A×B-beli,
és az eredetivel azonos emelkedésű zárt sétához jutunk. Így A × B zárt sétáihoz sem létezik k > 1,
amely mindegyik emelkedését osztja, tehát A× B szoros.

2. eset: A-ban nincs sem Z-séta, sem Z−1-séta, de B-ben van valamelyik. Ez az eset
ugyanúgy működik, mint az előző. (Vegyük észre, hogy A′ = A.)
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A A′

1. ábra. Egy 1 emelkedésű kör, és a belőle képzett új gráf, benne a kék és zöld élek
által alkotott rövidebb, de azonos emelkedésű körsétával.

3. eset: Sem A-ban, sem B-ben nincs sem Z-séta, sem Z−1-séta. Egy iránýıtott gráfban
nevezzük N -sétának a következő alakú sétákat: w0 → w1 ← w2 ← w3 → w4 → w5. Az előző esethez
hasonló módon képezzük egy tetszőleges X iránýıtott gráfból az X̂ iránýıtott gráfot úgy, hogy X̂ és

X csúcshalmaza megegyezzen, és tetszőleges x1, x2 ∈ V (X̂) csúcsokra (x1, x2) pontosan akkor legyen

éle az X̂-nak, ha X-ben létezik N -séta x1-ből x2-be. Ezúttal X nem feltétlenül lesz részgráfja X̂-nak.
Belátjuk, hogy az Â gráfban lesz egy 1 emelkedésű körséta, amely rövidebb nA-nál. Mivel az

eredeti körséta Z- és Z−1-mentes, benne az előre-, illetve hátramutató élek legalább kettesével követik

egymást. (A körséta emelkedése 1, ezért vannak benne előre- és hátramutató élek is.) Az Â az A-nak
pontosan azokat az éleit tartalmazza, amelyek kiinduló csúcsának be-foka nem 0. Emellett még új
élek is megjelennek: ha A-ban két hátramutató élt két előremutató él követ, vagyis: a0 ← a1 ← a2 →
a3 → a4, akkor Â-ban (a1, a4) és (a3, a0) is él. Az nA-nál rövidebb körséta a következő lesz Â-ban:
Minden a0 ← a1 ← a2 → a3 → a4 alakú A-beli sétát cseréljünk le Â-ban az a0 ← a1 → a4 alakú
sétára, majd ezen új sétákat, az eredeti séták sorrendjében haladva, kapcsoljuk össze egy körsétává

olyan Â-beli élekkel, amelyek A-nak is élei voltak. A kapott körséta rövidebb nA-nál, és emelkedése
azonos az eredeti séta emelkedésével, hiszen vagy megtartottunk egy élt, vagy egy 0 emelkedésű, 2
élből álló sétára cseréltünk egy 4 élből álló, szintén 0 emelkedésű sétát. Tehát a kapott körséta szoros,
és legfeljebb nA − 2 hosszú.

A Â

2. ábra. Egy 1 emelkedésű kör, és a belőle képzett új gráf, benne a kék és zöld élek
által alkotott rövidebb, de azonos emelkedésű körsétával.

Ugyańıgy B̂-ben is lesz egy legfeljebb nB − 2 hosszú, szoros körséta.

Az indukciós feltevés miatt Â × B̂ = Â× B szoros. Ennek a gráfnak egy zárt sétájában minden

élt lecserélve arra az N -sétára, ami miatt az él Â× B-be bekerült, egy A×B-beli zárt sétát kapunk,
azonos emelkedéssel. Így a Lemma felhasználásával ismét azt kaptuk, hogy A× B szoros. □

Megjegyzés. • A feladat számı́tástudományi eredetű. Egy gráf algebrai hosszának szokás ne-
vezni a benne található séták emelkedéseinek legnagyobb közös osztóját. A szoros szót csak mi
használtuk az 1 algebrai hosszú gráfokra, hogy megneheźıtsük a vonatkozó szakirodalom meg-
találását.
• Nem nehéz látni, hogy egy iránýıtott gráf algebrai hossza a komponensei algebrai hosszának
legnagyobb közös osztója. Így a feladatban nem kell feltenni, hogy a gráfok összefüggőek. Viszont
a feltétel elhagyása csak meglehetősen érdektelen technikai nehézségeket okoz.
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3. Legyenek a1, a2, a3, a4 olyan rögźıtett pozit́ıv egészek, melyekre lnko(a1, a2, a3, a4) = 1 teljesül,
és jelölje φ az Euler-féle függvényt. Mutassuk meg, hogy ha a

(1) φ(ax1
1 ) + φ(ax2

2 ) = φ(ax3
3 ) + φ(ax4

4 )

egyenletnek végtelen sok megoldása van az x1, x2, x3, x4 nemnegat́ıv egészekben, akkor vannak
olyan u, v pozit́ıv egészek, melyekkel az

(2) au1 = av3, au1 = av4, au2 = av3, au2 = av4

egyenlőségek legalább egyike teljesül!

Megoldás. A feladat megfogalmazása pontatlan, ugyanis ha bármelyik ai alap értéke, mondjuk
a1 = 1 és (x1, x2, x3, x4) megoldás, akkor x1 értékét tetszőlegesen megválasztva végtelen sok meg-
oldáshoz jutunk. Például, a1 = 1, a2 = 13, a3 = 2, a4 = 21 esetén (x1, 1, 1, 1) (x1 ≥ 0) végtelen sok
megoldást ad. Az alábbiakban először jellemezzük az elfajuló eseteket (ellenpéldákat), majd megadjuk
a probléma megoldását a nemelfajuló esetekben. Ehhez két esetet különböztetünk meg:

i) valamelyik ai alap értéke 1,
ii) az ai alapok egynél nagyobb egészek.

Megemĺıtjük, hogy a probléma azzal a konvencióval is orvosolható lenne, hogy ai = 1 esetén xi = 1
kell, hogy teljesüljön – de az egyszerűség kedvéért a fenti megkülönböztetést követjük.

Tegyük fel, hogy valamelyik ai értéke 1. A szimmetria miatt feltehető, hogy a1 = 1. Ekkor
szükségképpen φ(ax3

3 ) és φ(ax4
4 ) egyike 1 kell, hogy legyen. Valóban, ha φ(ax2

2 ) = 1, akkor az álĺıtás
triviális. Ha viszont φ(ax2

2 ) > 1, akkor (1) bal oldala páratlan, ı́gy jobb oldalának is páratlannak kell
lennie – ı́gy φ(ax3

3 ) = 1, φ(ax4
4 ) = 1 egyike valóban fennáll. A szimmetria miatt feltehetjük, hogy

φ(ax3
3 ) = 1. Mivel ellenpéldákat keresünk, ı́gy a3 ̸= 1, amiből az következik, hogy vagy x3 = 0 (és

a3 > 1 tetszőleges) vagy a3 = 2, x3 = 1. Mindkét esetben (1) egyenletünk a

(3) φ(ax2
2 ) = φ(ax4

4 )

egyenletre egyszerűsödik. Ennek az egyenletnek végtelen sok megoldása van (lásd például [2]), de
azok teljes léırása reménytelen. (Például, ha q = 2m+1 Fermat-pŕım, akkor φ(2m+1) = φ(q) – de azt

nem tudjuk, hogy végtelen sok Fermat-pŕım létezik-e.) Így megelégedhetünk azzal, hogy ha adott
a2, a4 mellett x2, x4 (3) egy megoldása, φ(ax3

3 ) = 1, akkor (felidézve, hogy most a1 = 1), (x, x2, x3, x4)
az (1) megoldása lesz, tetszőleges x ≥ 0 esetén. Itt persze a2, a3, a4 úgy választandó, hogy a kért
feltételek teljesüljenek, de (2) ne teljesüljön. (Egy ilyen példát fent megadtunk.) Látható, hogy az
összes ellenpélda ezen a módon előálĺıtható.

Tegyük most fel, hogy ai > 1 (1 ≤ i ≤ 4), és legyen S az a1a2a3a4 pŕımosztóiból álló halmaz.
Vegyük észre, hogy ekkor (1) speciális esete az alábbi egyenletnek:

(4) t1s1 + t2s2 − t3s3 = 1,

ahol

ti =

∏
p|ai

(1− 1/p)∏
p|a4

(1− 1/p)
(i = 1, 2, 3),

továbbá s1, s2, s3 S-egységek, azaz olyan racionális számok, melyek számlálója és nevezője csak S-beli
pŕımosztókkal rendelkezik. Valóban, ha x1, x2, x3, x4 az (1) megoldása, akkor si = axi

i /a
x4
4 a (4) egy

megoldása.
Vizsgáljuk meg, hogy előfordulhat-e az, hogy az (1) két különböző, mondjuk (y1, y2, y3, y4) és

(z1, z2, z3, z4) megoldása a (4) ugyanazon (s1, s2, s3) megoldását adja! Ez azt jelentené, hogy az

ay1−z1
1 = ay4−z4

4 , ay2−z2
2 = ay4−z4

4 , ay3−z3
3 = ay4−z4

4 .

Mivel ai > 1 (1 ≤ i ≤ 4), ı́gy azt kapjuk, hogy yi ̸= zi (1 ≤ i ≤ 4). De akkor a fenti első (és második)

egyenlőség alapján (2) teljesül. Így a továbbiakban feltehetjük, hogy (1) különböző megoldásai (4)
különböző megoldásait adják. (Megjegyzés: elvi szempontból ez az a pont, ahol az elfajuló esetek
(ellenpéldák) belépnek.)
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Az S-egység egyenletek elmélete szerint (lásd például [1], 131. oldal, Corollary 6.1.2), a (4) egyenlet
csak véges sok nem elfajuló (azaz a bal oldalon eltűnő részletösszeg mentes) megoldással rendelkezik.

Így ha (1) megoldásszáma végtelen, akkor végtelen sok megoldás szükségképpen (4) elfajuló (s1, s2, s3)
megoldásához tartozik. A szimmetria miatt feltehető, hogy olyan megoldásokról van szó, ahol t1s1 =
t3s3 – azaz, szükségképpen

(5) φ(ax1
1 ) = φ(ax3

3 )

végtelen sok x1, x3 esetén. Világos, hogy az utóbbi egyenletnek csak akkor lehet végtelen sok meg-
oldása, ha a1 és a3 pŕımfaktorai pontosan ugyanazok, azaz ha ezek a számok

a1 = pα1
1 · · · p

αk
k , a3 = pβ1

1 · · · p
βk

k

alakúak, pozit́ıv kitevőkkel. Így viszont az (5) egyenletből

px1α1
1 · · · px1αk

k = px3β1

1 · · · px3βk

k

következik. Ez viszont azzal ekvivalens, hogy x1(α1, . . . , αk) = x3(β1, . . . , βk), vagyis αi/βi = αj/βj

(1 ≤ i < j ≤ k). Emiatt vannak olyan u, v pozit́ıv egészek, hogy αi/βi = u/v (1 ≤ i ≤ k). Innen
viszont az álĺıtás közvetlenül adódik. □

Hivatkozások.

[1] J.-H. Evertse, K. Győry, Unit Equations in Diophantine Number Theory, Cambridge Studies in
Advanced Mathematics 146, Cambridge University Press, 2015.

[2] C. Pomerance, Popular values of Euler’s function, Mathematika 27 (1980), 84–89.

4. Adott pozit́ıv k ≥ 1 egész esetén definiáljuk az (Fk,n)n∈N k-Fibonacci sorozatot az
Fk,0 = 0, Fk,1 = 1, Fk,n = kFk,n−1 + Fk,n−2 (n ≥ 2) rekurzióval. Oldjuk meg az

(6) Fk,n = 2m3l

diofantikus egyenletet a (k, n,m, l) nemnegat́ıv egészekre nézve.

Megoldás. A megoldásban fontos szerepet játszik a Lucas-sorozat fogalma.

Adott A,B egészek esetén az

u0 = 0, u1 = 1, un = Aun−1 +Bun−2, (n ≥ 2)

módon definiált u = (un)n≥0 binér rekurźıv sorozatot Lucas-sorozatnak nevezzük.
Az f(x) = x2−Ax−B polinomot az u sorozat karakterisztikus polinomjának h́ıvjuk. Az f gyökeit

α-val és β-val jelölve, azt mondjuk, hogy az u Lucas-sorozat nem degenerált, ha AB ̸= 0 és α/β nem
egységgyök. Az u Lucas-sorozatot valósnak nevezzük, ha α és β valós számok.

A megoldás egyik fő eszköze Carmichael egy klasszikus tétele (ld. [3], Theorem XXIII), amely
nem degenerált Lucas-sorozatok primit́ıv pŕımosztóival kapcsolatos. Adott u Lucas-sorozat esetén
azt mondjuk, hogy egy p pŕım primit́ıv pŕımosztója un-nek, ha

p | un és p ∤ u1u2 · · ·un−1.

1. Tétel (Carmichael-tétel). Legyen un egy nem degenerált, valós Lucas-sorozat. Ha n ̸= 1, 2, 6,
akkor un-nek van primit́ıv pŕımosztója, kivéve, ha

n = 12, α+ β = 1, αβ = −1.

Carmichael fenti tétele azt álĺıtja tehát, hogy bizonyos feltételek mellett az un-nek mindig van
primit́ıv pŕımosztója, kivéve a Fibonacci-sorozat 12. tagját.
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Legyen (Fk,n)n≥0 a feladatban szereplő k-Fibonacci sorozat. Vegyük észre, hogy az (Fk,n)n≥0

sorozat k = 1 esetén éppen a (klasszikus) Fibonacci-sorozatot adja vissza. Továbbá (Fk,n)n≥0 minden
rögźıtett k ≥ 1-re egy nem degenerált, valós Lucas-sorozat. Valóban, mivel az (Fk,n)n≥0 sorozat
karakterisztikus polinomja éppen f(x) = x2 − kx − 1, ezért k ≥ 1 miatt AB = k · 1 ̸= 0. Továbbá,

mivel az f gyökei α = k+
√
k2+4
2

és β = k−
√
k2+4
2

, ezért ezek minden k ≥ 1 esetén valósak és az is
könnyen ellenőrizhető, hogy α ̸= ±β, azaz feltehető, hogy α/β nem egységgyök.

Ha n = 0, akkor Fk,n = Fk,0 = 0 és ezért a (6) egyenlet nem állhat fenn, hiszen ekkor a (6) bal
oldala 0, mı́g jobb oldala m ≥ 0, l ≥ 0 miatt, 2m3l > 0. Ezért a továbbiakban feltehető, hogy n ≥ 1.

Mivel az (Fk,n)n≥0 sorozat második, harmadik és negyedik tagja éppen

Fk,2 = k, Fk,3 = k2 + 1, Fk,4 = k(k2 + 2),

ezért könnyen látszik, hogy Fk,2, Fk,3, Fk,4 közül legalább az egyik biztosan páros, és legalább az egyik

biztosan osztható 3-mal. Így, ha a (6) egyenlet fennáll, azaz Fk,n = 2m3l, akkor ez azt jelenti, hogy
bármely n ≥ 5 esetén az Fk,n tagnak nincs primit́ıv pŕımosztója (hiszen a 2 és 3 pŕımek korábban már
fellépnek). Másrészt viszont, az (Fk,n)n≥0 sorozat egy valós, nem degenerált Lucas-sorozat. Ezért, ha
n ̸= 1, 2, 6, akkor a Carmichael-tétel értelmében Fk,n-nek mindig van primit́ıv pŕımosztója, kivéve a
k = 1 és n = 12 esetet. Ez azt jelenti tehát, hogy az n ∈ {1, 2, 3, 4, 6} és (k = 1, n = 12) esetektől
eltekintve a (6) egyenletnek nem lehet megoldása.

A megoldás hátralévő részében a még fennmaradó n ∈ {1, 2, 3, 4, 6} és (k = 1, n = 12) esetekkel
foglalkozunk.

Vegyük észre, hogy k = 1, n = 12 esetén azt kapjuk, hogy F1,12 = 144 = 24 ·32, ami a (k, n,m, l) =
(1, 12, 4, 2) megoldást eredményezi.

Végül tekintsük az n ∈ {1, 2, 3, 4, 6} eseteket. Ha most n = 1, akkor (6) nyilván csak m = l = 0
mellett állhat fenn. Ez adja a (k, n,m, l) = (k, 1, 0, 0), k ∈ Z≥1 parametrikus megoldáscsaládot.

Ha n = 2, akkor a (6) egyenlet a k = 2m3l alakot ölti, ami a (k, n,m, l) = (2m3l, 2,m, l), m ∈
Z≥0, l ∈ Z≥0 kétparaméteres megoldáscsaládra vezet.

Ha n = 3, akkor a (6) egyenlet a k2 + 1 = 2m3l alakot ölti. Világos, hogy egy k2 + 1 alakú egész
nem lehet osztható 3-mal, és ezért szükségképpen l = 0. Továbbá, az is nyilvánvaló, hogy k2+1 vagy
páratlan vagy pedig páros, de nem osztható 4-gyel. Ezek alapján azt kapjuk, hogy k2 + 1 = 1, ami
ellentmondás, vagy pedig k2 + 1 = 2, ami k = 1-re vezet. Így a (6) egyenlet n = 3-nak megfelelő
egyetlen megoldása: (k, n,m, l) = (1, 3, 1, 0).

Ha n = 6, akkor a (6) egyenlet a k(k2 + 1)(k2 + 3) = 2m3l alakot ölti. Mivel k2 + 1 nem osztható

3-mal és 4-gyel sem, ezért szükségképpen k2 + 1 = 2 teljesül, amiből k = 1 jön. Így a (6) egyenlet
n = 6-nak megfelelő egyetlen megoldása: (k, n,m, l) = (1, 6, 3, 0).

Végül tegyük fel, hogy n = 4. Ekkor a (6) egyenlet a k(k2 + 2) = 2m3l alakot ölti. Ha most 3 | k
és k páratlan, akkor 3 ∤ k2+2 és k2+2 páratlan. Ekkor szükségképpen k2+2 = 1, ami ellentmondás.
Legyen most 3 | k és k páros. Ekkor 3 ∤ k2 + 2 és k2 + 2 ≡ 2 (mod 4). Ezért k2 + 2 = 2, ami
szintén ellentmondás. Tegyük fel, hogy 3 ∤ k és k páratlan. Ekkor szükségképpen m = 0, k = 1 és
3 = k2+2 = 3l, ami a (k, n,m, l) = (1, 4, 0, 1) megoldást szolgáltatja. Végül, tegyük fel, hogy 3 ∤ k és
k páros. Ekkor k2 + 2 ≡ 2 (mod 4) és 3l | k2 + 2 miatt, azt kapjuk, hogy k = 2m−1 és k2 + 2 = 2 · 3l.
Ez pedig a 22m−3 +1 = 3l egyenletre vezet. Ezért, a Catalan-egyenletre vonatkozó ismereteink miatt
azt kapjuk, hogy 2m − 3 = 1, l = 1 vagy 2m − 3 = 3, l = 2. Ezért ebben az alesetben az alábbi
megoldások adódnak: (k, n,m, l) = (2, 4, 2, 1) és (k, n,m, l) = (4, 4, 3, 2).

A feladat megoldását befejeztük. □

Hivatkozások.

[3] R. D. Carmichael, On the numerical factors of the arithmetic forms αn ± βn, Ann. of Math. (2)
15 (1913/14), no. 1–4, 49–70.
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5. Mely m ≥ 2 természetes számokra vannak olyan 0 < n1 < n2 < · · · < nm természetes számok
és olyan a, b pozit́ıv számok, amelyre a

nj+1−1∑
k=nj

(a+ kb), j = 1, . . . ,m− 1

összegek mind egyenlők?

Megoldás. A válasz: m = 2, 3. Például a 4 + 5 + 6 = 7 + 8 egyenlőség mutatja, hogy m = 3
megfelelő. Megmutatjuk, hogy m = 4 már nem lehetséges.

Tegyük fel, hogy m = 4-re léteznek a fenti számok és sorozat. 1/b-vel végigszorozva a sorozat
tagjait, feltehető, hogy a sorozat általános tagja α + k alakú. Az

Sk =
k−1∑
j=0

(α + j) =
k(k − 1)

2
+ αk =

k2

2
+

(
α− 1

2

)
k

összegekkel tehát az Snj+1
− Snj

különbségek mind egyenlők. Ha α irracionális, akkor ez csak úgy
lehetséges, ha az nj+1 − nj különbségek is egyenlők, de akkor

Snj+1
− Snj

=
1

2
(nj+1 − nj)(nj+1 + nj) + (nj+1 − nj)

(
α− 1

2

)
nem lehetnek egyenlők (ezek mind különbözőek).

Tehát α racionális, ı́gy α− 1/2 = p/q valamilyen p, q egészekkel, q > 0. De akkor az Snj+1
− Snj

különbségek egyenlősége miatt azt kapjuk, hogy a

2q2Sk + p2 = (kq + p)2, k = n1, n2, n3, n4

négyzetszámok számtani sorozatot alkotnak, márpedig Euler tétele szerint nincs négytagú,
négyzetszámokból álló számtani sorozat (ld. pl. [4]), és ez az ellentmondás igazolja, hogy m ≥ 4
nem lehetséges. □

Hivatkozások.

[4] T.C. Brown, A.R. Freedman, and P. J.-S. Shiue, Progressions of squares, Australas. J. Combin.
27 (2004), 187–192.

6. Legyen n adott természetes szám. Egy P (z) = 1 + z + a2z
2 + · · · + anz

n (an ̸= 0) polinomra
jelölje δP a P zérushelyei abszolút értékeinek a legkisebbikét. Határozzuk meg a supP δP számot,
ahol a szuprémumot a fenti alakú polinomokra képezzük.

Megoldás. Legyenek z1, . . . , zn a zérushelyek. Mivel
∏

j zj = (−1)n/an és
∑

j

∏
i ̸=j zi =

(−1)n+1/an, a ∑
j

1

zj
= −1

egyenlőség adódik, amiből ∑
j

1

|zj|
≥ 1.

Másrészt a bal oldali összeg legfeljebb n/δP , ezért δP ≤ n adódik. A (z/n + 1)n polinom mutatja,
hogy itt egyenlőség érhető el, tehát a kérdéses szuprémum n. □
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7. Igazoljuk, hogy egy a0, . . . , an valós sorozatra az alábbi két álĺıtás ekvivalens.

a) Valamely L konstansra teljesül az, hogy ha {ck}Nk=1 egy tetszőleges véges valós sorozat és

bk = cka0 + ck−1a1 + · · ·+ ck−nan, k = 1, . . . , N + n

(ahol cj = 0, ha j ≤ 0 vagy j > N), akkor

N∑
k=1

c2k
k
≤ L

N+n∑
k=1

b2k
k
.

b) A P (z) =
∑n

k=0 akz
k polinomnak nincs zérushelye az egységkörön.

Megoldás. Vegyük észre, hogy a feladat átfogalmazható függvénytani problémává. Legyen
ugyanis

f(z) =
N−1∑
k=0

ck+1z
k,

D az egységkörlap és dA a területmérték. Ekkor∫
D

|f |2dA = π
N∑
k=1

c2k
k
,

mı́g

f(z)P (z) =
N+n−1∑
k=0

bk+1z
k,

és ∫
D

|fP |2dA = π
N+n∑
k=1

b2k
k
.

Tehát valójában azt kell igazolni, hogy az, hogy létezik L úgy, hogy tetszőleges f valós polinom esetén∫
D

|f |2dA ≤ L

∫
D

|fP |2dA,

az ekvivalens azzal, hogy a P polinomnak nincs zérushelye az egységkörön.

Először tegyük fel, hogy P -nek nincs zérushelye az egységkörön, és legyen δ a P zérushelyei és az
egységkör közötti távolságok legkisebbike. Tekintsük a D0 = {z | 1 − δ/2 < |z| < 1} körgyűrűt. Ha
P foka n és a főegyütthatója a, akkor nyilvánvalóan

|f(z)| ≤ 1

|a|(δ/2)n
|f(z)P (z)|

a D0 körgyűrűn, ezért elegendő igazolni, hogy valamilyen C1 konstanssal∫
|z|≤1−δ/2

|f |2 dA ≤ C1

∫
D0

|f |2 dA.

A Cauchy-formula szerint ha 1−δ/4 < R < 1, és CR jelöli a 0 körüli R sugarú kört, akkor |z| ≤ 1−δ/2
esetén

|f(z)| ≤ 1

2π

∫
CR

|f(ξ)|
|ξ − z|

|dξ| ≤ 1

(δ/4)2π

∫
CR

|f(ξ)||dξ|,

és ı́gy a Jensen-egyenlőtlenség szerint

|f(z)|2 ≤ 1

(δ/4)22π

∫
CR

|f(ξ)|2|dξ|,

amiből ∫
|z|≤1−δ/2

|f |2 dA ≤ 8

δ2

∫
CR

|f(ξ)|2|dξ|



9

adódik. Ha ezt az egyenlőtlenséget megszorozzuk R-rel és R szerint integráljuk az (1− δ/4, 1) inter-
vallumon, akkor

1− (1− δ/4)2

2

∫
|z|≤1−δ/2

|f |2 dA ≤ 8

δ2

∫
D0

|f |2 dA,

tehát

C1 =
16

(1− (1− δ/4)2)δ2

egy alkalmas konstans.

A másik irányhoz tegyük fel, hogy z0 a P (z) egy gyöke az egységkörön, és legyen

f(z) =

(
z + z0

2

)M

+

(
z + z0

2

)M

,

valamilyen nagy M természetes számra. Ekkor |f |-nek a z0 pontban szigorú maximuma van az
egységkörön és a z0 bármely környezetén ḱıvüli pontjaiban a D-nek |f(z)| exponenciálisan kicsi M -
ben. Indirekt módon tegyük fel, hogy létezik az a) pontban egy megfelelő L konstans. Válasszuk

z0-nak egy olyan U környezetét, amelyen |P | < 1/(2L). Értelemszerűen, U , az U -nak az x tengelyre
vett tükörképe, ugyanilyen környezete lesz z0-nak. Ekkor∫

U∪U
|f |2dA ≤

∫
D

|f |2dA ≤ L

∫
D

|fP |2dA ≤ L

(
Ke−cM +

1

2L

∫
U∪U
|f |2dA

)
,

valamilyen M -től független K ≥ 0, és c > 0 konstanssal. Ebből pedig∫
U∪U
|f |2dA ≤ 2LKe−cM

adódik. Azonban ez nagy M -re nem lehet igaz, hiszen a z0-nak az 1/(2M) sugarú környezetében
|f(z)| ≥ 1/2 (vegyük észre, hogy f deriváltjának abszolút értéke legfeljebb M/2 a D körlapon), ezért
a bal oldal legalább 1/M2 nagyságrendű. Ez az ellentmondás igazolja, hogy semmilyen, a b) pontbeli
feltételeket teljeśıtő P polinomhoz sincs megfelelő L. □

8. Legyen adott 0 < D < 1/2 és 0 < α < 1. Igazoljuk, hogy létezik véges sok, 1 szerint periodikus,
R-en értelmezett, egynél nem nagyobb abszolút értékű g1, . . . , gd Lipschitz-függvény és egy D-től
független pozit́ıv C konstans, hogy minden x, y ∈ R-re, ha D ≤ |x− y| < 1/2, akkor létezik olyan
i ∈ {1, ..., d}, amelyre ∣∣∣∣∣

∞∑
k=0

3−kαgi(3
kx)−

∞∑
k=0

3−kαgi(3
ky)

∣∣∣∣∣ ≥ C.

Megoldás. Az első lépésben egy segédálĺıtást igazolunk.

2. Lemma. Tegyük fel, hogy 0 < α < 1. Tetszőleges x, y ∈ R esetén létezik δx,y > 0, amely x és y
függvénye, valamint egy 1 szerint periodikus R-en értelmezett Lipschitz-függvény g, amelyre minden
(u, v) ∈ B(x, δx,y)×B(y, δx,y) esetén

(7)

∣∣∣∣∣
∞∑
k=0

3−kαg(3ku)−
∞∑
k=0

3−kαg(3kv)

∣∣∣∣∣ ≥ C :=
1− 3−α

2
.
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A Lemma bizonýıtása. Legyen S1, az egységkör azonośıtva R-el modulo 1, és x, y ∈ S1 esetén
a rövidebb köŕıvvel mért távolságot jelölje |x− y|, ha x, y ∈ R és 1/2 > |x− y|, akkor ez megegyezik
a közönséges R-beli távolsággal.

Válasszuk meg N -et úgy, hogy

(8)
∞∑

k=N

3−αk <
1− 3−α

2
.

Később választunk egy alkalmas δ0 > 0 értéket. Úgy definiáljuk g-t, hogy g(z) = 1 minden
z ∈ B(x, δ0) esetén, továbbá g(z) = 0, ha z /∈ B(x, 2δ0), és g szakaszonként lineáris és folytonos
függvény S1-en.

Legyen T3(x) = {3x} = 3x mod 1, továbbá T 0
3 (x) = x és T k+1

3 (x) = T3(T
k
3 (x)).

Először tegyük fel, hogy T k
3 (y) ̸= x minden k-ra. Ekkor létezik olyan δ0 > 0, hogy T k

3 (B(y, δ0))∩
B(x, 2δ0) = ∅ minden k = 0, 1, ..., N − 1 esetén. Legyen δx,y := δ0.

Ekkor minden v ∈ B(y, δx,y)-ra teljesül, hogy

(9)
∞∑
k=0

3−kαg(3kv) =
∞∑

k=N

3−kαg(3kv) ≤ 1− 3−α

2
,

illetve minden u ∈ B(x, δx,y) esetén

(10)
∞∑
k=0

3−kαg(3ku) ≥ 3−α·0g(30u) = 1,

ami a (7) egyenlőtlenséget eredményezi.
Most tételezzük fel, hogy létezik olyan k0 ≥ 1, hogy

(11) T k0
3 (y) = x, de T k

3 (y) ̸= x k = 0, ..., k0 − 1.

Válasszuk δ0 > 0-t úgy, hogy {T k
3 (y)}

k0−1
k=0 ∩B(x, 2δ0) = ∅. Ekkor

∞∑
k=0

3−kαg(3ky) =

k0−1∑
k=0

3−kαg(3ky) + 3−k0α

∞∑
k=0

3−kαg(3kx) = 3−k0α

∞∑
k=0

3−kαg(3kx),

hiszen g(3ky) = 0 az első k0 − 1 lépésben. Mivel
∑∞

k=0 3
−kαg(3kx) ≥ 1, ezért

∞∑
k=0

3−kαg(3kx)−
∞∑
k=0

3−kαg(3ky) ≥ 1− 3−k0α ≥ 1− 3−α.

A
∑∞

k=0 3
−kαg(3kx) folytonossága alapján elegendően kicsiny δx,y > 0-ra minden (u, v) ∈ B(x, δx,y)×

B(y, δx,y) esetén a (7) egyenlőtlenség fennáll. □

A feladat megoldása: Mivel H = {(x, y) ∈ S1 × S1 : |x − y| ≥ D} kompakt halmaz,
ı́gy a lemma alapján fedhető véges sok nýılt halmazzal és választhatunk alkalmas gi, i = 1, ..., d,
függvényeket úgy, hogy bármely (x, y) ∈ H-ra megfelelő gi-re a (7) egyenlőtlenség teljesüljön. □

9. Legyenek λ, µ ∈ (0, 1) konstansok, I ⊆ R egy nemüres nýılt intervallum, és legyen f : I → R egy
nemkonstans alulról félig folytonos, p : I → R pedig egy tetszőleges pozit́ıv függvény. Igazoljuk,
hogy az

f

(
λp(u)u+ (1− λ)p(v)v

λp(u) + (1− λ)p(v)

)
≤ µp(u)f(u) + (1− µ)p(v)f(v)

µp(u) + (1− µ)p(v)
egyenlőtlenség akkor és csak akkor teljesül minden u, v ∈ I esetén, ha f konvex I-n és λ = µ.

Megoldás. Az első lépésben egy segédálĺıtást igazolunk.
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3. Lemma. Legyenek α, β : I2 →]0, 1[ olyan függvények, amelyekre teljesül

(12)
(
α(u, v)− β(u, v)

)(
α(v, u)− β(v, u)

)
≥ 0 (u, v ∈ I).

Legyen f : I → R alulról félig folytonos függvény, melyre

(13) f(α(u, v)u+ (1− α(u, v))v) ≤ β(u, v)f(u) + (1− β(u, v))f(v)

minden u, v ∈ I esetén. Ekkor f konvex.

A Lemma bizonýıtása. Ha f nem konvex I-n, akkor az [5] cikk 2.1. Tétele szerint szerint
vannak olyan u < v I-beli elemek, hogy

tf(u) + (1− t)f(v) < f(tu+ (1− t)v) (t ∈]0, 1[).
Alkalmazzuk ezt az egyenlőtlenséget a t := α(u, v) és t := 1 − α(v, u) helyetteśıtésekkel. Ekkor az
f -re teljesülő (13) függvényegyenlőtlenség szerint

α(u, v)f(u) + (1− α(u, v))f(v) < f(α(u, v)u+ (1− α(u, v))v)

≤ β(u, v)f(u) + (1− β(u, v))f(v),

(1− α(v, u))f(u) + α(v, u)f(v) < f((1− α(v, u))u+ α(v, u)v)

≤ (1− β(v, u))f(u) + β(v, u)f(v).

Ezekből következik, hogy

[α(u, v)− β(u, v)][f(u)− f(v)] < 0,

[α(v, u)− β(v, u)][f(v)− f(u)] < 0.

Tehát
[α(u, v)− β(u, v)][α(v, u)− β(v, u)][f(v)− f(u)]2 < 0,

ami ellentmond az α, β függvényekre vonatkozó (12) egyenlőtlenségnek. □

Alkalmazzuk most a fenti Lemmát az alábbiak szerint értelmezett α, β : I2 → ]0, 1[ függvényekkel:

α(u, v) :=
λp(u)

λp(u) + (1− λ)p(v)
, β(u, v) :=

µp(u)

µp(u) + (1− µ)p(v)
.

Ekkor

α(u, v)− β(u, v) =
(λ− µ)p(u)p(v)

[λp(u) + (1− λ)p(v)][µp(u) + (1− µ)p(v)]
.

Így
[α(u, v)− β(u, v)][α(v, u)− β(v, u)] ≥ 0 (u, v ∈ I).

Tehát a Lemma alapján f konvex kell legyen.
Ha f konstans, akkor nincs mit bizonýıtanunk. Feltehetjük tehát, hogy f egy nemkonstans konvex

függvény. Ekkor I valamely J nýılt részintervallumán szigorúan monoton. Megmutatjuk, hogy létezik
egy olyan u ∈ J pont, ahol f differenciálható, és léteznek olyan u-hoz konvergáló vn < u és u < wn

sorozatok, hogy p(vn)→ p(u) és p(wn)→ p(u), ha n→∞.
Mivel f konvex J-n, ezért differenciálható J összes pontjában kivéve egy T legfeljebb

megszámlálható halmazt, továbbá f ′(u) ̸= 0, ha f differenciálható u-ban. Tegyük fel, hogy T =
{t1, t2, . . . } és értelmezzük a p∗ : I → R függvényt ı́gy:

p∗(t) :=

{
p(t) ha t ∈ J \ T,
k ha t = tk.

Tehát p∗
”
szétzilálja” p-t a T halmazon. Blumberg 1922-es tétele szerint létezik olyan S ⊂ J sűrű

halmaz, hogy p∗|S folytonos S-en. Ekkor S ⊆ T nem teljesülhet! Tehát létezik u ∈ S \ T . Sőt létezik
olyan δ > 0, hogy ]u − δ, u + δ[∩S ∩ T = ∅. Így p és p∗ megegyezik ]u − δ, u + δ[∩S-en. Legyenek
vn, wn ∈ ]u− δ, u+ δ[∩S olyan sorozatok, hogy vn < u, u < wn és vn → u, wn → u, ha n→∞.

Értelmezzük most az Fu : J → R függvényt az alábbi képlettel:

Fu(v) :=
µp(u)f(u) + (1− µ)p(v)f(v)

µp(u) + (1− µ)p(v)
− f

(
λp(u)u+ (1− λ)p(v)v

λp(u) + (1− λ)p(v)

)
, (v ∈ J).
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Ekkor a feladat feltétele szerint Fu-nak v = u-ban minimuma van, ı́gy a fentebb megkonstruált (vn),
(wn) sorozatokkal teljesül, hogy

Fu(u) = 0 ≤ Fu(vn), Fu(u) = 0 ≤ Fu(wn) (n ∈ N).
Egyszerű algebrai átalaḱıtással kapjuk, hogy

Fu(vn) =
(1− µ)p(vn)

µp(u) + (1− µ)p(vn)
· (f(vn)− f(u))

−
f

(
λp(u)u+ (1− λ)p(vn)v

λp(u) + (1− λ)p(vn)

)
− f(u)

λp(u)u+ (1− λ)p(vn)vn
λp(u) + (1− λ)p(vn)

− u

· (1− λ)p(vn)(vn − u)

λp(u) + (1− λ)p(vn)
.

Ezért az f függvény u-beli differenciálhatósága és a p(vn)→ p(v) konvergencia miatt

0 ≥ lim
n→∞

Fu(vn)

vn − u
= (1− µ)f ′(u)− (1− λ)f ′(u) = (λ− µ)f ′(u).

A (wn) sorozat alkalmazásával hasonló módon adódik, hogy (λ− µ)f ′(u) ≥ 0. Mivel f ′(u) ̸= 0, ezért
ezekből az egyenlőtlenségekből λ = µ következik. □

Hivatkozások.
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A. Gilányi, L. Losonczi, M. Plum, and Zs. Páles, eds.), Internat. Ser. Numer. Math., vol. 157,
Birkhäuser, 2009, p. 251–260. MR 2758986 (2012b:26028)

10. Legyenek N és M rögźıtett pozit́ıv egész számok, N ≥ M , λ = M/N . Legyen P olyan
valósźınűség a (0, 1]× (0, 1] egységnégyzeten, melynek marginális eloszlásfüggvényei: Fx a (0, 1]-
en egyenletes eloszlás, Fy pedig teljeśıti az Fy(y2)−Fy(y1) ≤ (y2−y1)/λ, y1 ≤ y2 feltételt. Minden k
pozit́ıv egészre jelölje F (k) az olyan [0, 1]-re koncentrált eloszlások F (k) eloszlásfüggvényeinek hal-
mazát, melyek képe folytonos töröttvonal és bármely

[
i

kN
, i+1
kN

]
intervallumon F (k) vagy konstans,

vagy pedig 1/λ meredekségű egyenes, i = 0, 1, 2, . . . . Igazoljuk, hogy létezik a (0, 1] × (0, 1]-re
koncentrált P (k) valósźınűségeknek egy olyan sorozata, melyek a valósźınűségi mértékek gyen-
ge konvergenciájának értelmében P -hez konvergálnak, és melyek marginális eloszlásfüggvényeire

igaz, hogy F
(k)
x a (0, 1]-en egyenletes eloszlás és F

(k)
y ∈ F (k), k = 1, 2, . . . .

Megoldás. Legyen F a P eloszlásfüggvénye. Legyen xi = i/M az Fx eloszlás i/M -kvantilise,
yi pedig az Fy eloszlás i/M -kvantilise, i = 0, 1, . . . ,M . Választható x0 = y0 = 0 és xM = yM = 1.
Legyen

Ri,j = (xi−1, xi]× (yj−1, yj], i, j = 1, 2, . . . ,M.

Nevezzük a
Gj = (0, 1]× (yj−1, yj] = ∪Mi=1Ri,j, j = 1, 2, . . . ,M

téglalapokat szürke sávoknak. Láthatjuk, hogy P (Gj) = 1/M , j = 1, 2, . . . ,M .
Most vegyük fel a függőleges tengelyen a 0, 1

N
, 2
N
, . . . , 1 osztópontokat. Válasszuk meg az l1, . . . , lM

egészeket úgy, hogy Z̄j =
lj
N

és Zj =
lj−1

N
jelöléssel a (Zj, Z̄j] intervallum tartalmazza az yj értéket

(j = 1, 2, . . . ,M). Mivel az Fy meredeksége legfeljebb 1/λ = N/M , ı́gy különböző j értékekre a
(Zj, Z̄j] intervallumok diszjunktak.

A
Bj = (0, 1]× (Zj, Z̄j], j = 1, 2, . . . ,M

téglalapokat fekete sávoknak nevezzük. A

Wj = (0, 1]× (Z̄j−1, Zj], j = 1, 2, . . . ,M
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téglalapokat pedig fehér sávoknak nevezzük. Néhány Wj üres halmaz lehet. A fehér és fekete sávok
együttesen az egységnégyzet egy felosztását adják. Minden egyes szürke sáv mértékét át fogjuk
mozgatni a megfelelő fekete sávba úgy, hogy a fehér sávok mértéke 0 lesz.

Definiáljuk a P̃ valósźınűséget az egységnégyzeten. Legyen P̃ egyenletes az (xi−1, xi] × (Zj, Z̄j]
téglalapon úgy, hogy legyen

P̃
(
(xi−1, xi]× (Zj, Z̄j]

)
= P ((xi−1, xi]× (yj−1, yj])

minden i és j esetén. Ezzel P̃ definiált a fekete sávokon. Legyen a P̃ -mértéke minden fehér sávnak
0. Legyen F̃ a P̃ eloszlásfüggvénye, legyenek F̃x és F̃y a marginális eloszlásfüggvényei. Ekkor F̃x

egyenletes eloszlás a (0, 1]-en, F̃y pedig a (0, 1]-re koncentrált eloszlás eloszlásfüggvénye, folytonos
töröttvonal, és a fehér sávok mentén konstans, a fekete sávok mentén pedig 1/λ = N/M meredekségű.
Látható, hogy a ∞-távolságra: ∥F − F̃∥∞ ≤ 2/M .

Végezzük el a fenti procedúrát M és N helyett kM és kN -re, k = 1, 2, . . . . A kapott P̃ (k)

valósźınűségek marginális eloszlásfüggvényeire igaz: F̃
(k)
x a (0, 1]-en egyenletes eloszlás és F̃

(k)
y ∈ F (k),

k = 1, 2, . . . , továbbá ∥F − F̃ (k)∥∞ ≤ 2
kM

. □


