

Developing secondary students' inferential reasoning in statistics

Maxine Pfannkuch, Auckland University, New Zealand

Data detectives use PPDAC

Three strands run through the NZ curriculum (Yrs 1-13)

Statistical Investigation Skills & mental habits for "doing"

Statistical Literacy

Skills & mental habits for **interp./critiquing** reports of investigations **done by others**

Probability Includes math. connection

DEPARTMENT OF STATISTICS

Statistical inference

Small part of the NZ statistical curriculum

DEPARTMENT OF STATISTICS

Outline of Talk

- Why inference should be in the curriculum
- Big ideas behind inference
- Our research
 - Students' initial ideas about inference
 - Sequence of instruction developed for 14 yearolds
 - Students' ideas about inference after teaching
- Conclusion

- Investigators analysed the sodium content of some beef (B) hot dogs and some poultry (P) hot dogs. This is their graph (Franklin et al., 2007).
- Discuss in pairs what statements you would make from these plots.

- What statements did you want to make?
- What statements did you make?
 - Did you describe what you can see?
 - Did you infer about …?
 - Did you consider sample sizes?
 - Does it matter?

DEPARTMENT OF STATISTICS

Inference Research at School level

- Pratt & Ainley (2008) The problem
- Students and teachers do not know whether they are playing Game 1
 - Reasoning about data as if it were the whole population
- Or Game 2
 - Reasoning about an underlying population from which the data were a sample

Inference research at University level

- Study on students' grasp of statistical inference concepts:
 - -the results from our study agree with the findings of the considerable research that has been done in the last thirty years ... that people tend to think deterministically and lack awareness or understanding of variation and its relation to sample size.

(Meletiou-Mavrotheris, Lee, & Fouladi, 2007)

Instruction at school

- Research suggests students should be introduced to inferential concepts much earlier
- Students need a deeper understanding of sampling variability (Konold & Kazak, 2008)

DEPARTMENT

Statistical inference

 Statistics is about making decisions in the face of uncertainty

Statistical inference

"moves beyond the data in hand to draw conclusions about some wider universe, taking into account that variation is everywhere and the conclusions are uncertain" (Moore, 2007)

is not quite the way it really is"

How did they travel to school?

DEPARTMENT OF STATISTICS How did they travel to school?

 $S \otimes S \otimes$

How did they travel to school?

Bar Chart Animations

Play

- <u>Samples of 1000</u>
- Samples of 300
- Samples of 100
- Samples of 30

"What I see is not quite the way it really is"

Comparing heights of boys and girls at age 12

From samples of size 30

Comparing heights of boys and girls at age 12

From samples of size 30

Comparing heights of boys and girls at age 12

From samples of size 30

Boxplots with a Memory

Play

- <u>1-sample build-up, n=30</u>
- <u>2-sample build-up, n=30</u>

Å 333

Our Research – Method

Research Team

DEPARTMENT OF STATIS

- Mixed methods
 - Design research (two cycles)
 - Materials designed to engineer and support a new type of learning and reasoning
 - Prepost tests (n≈100) from 2nd cycle
 - Prepost interviews (n=14) from 1st and 2nd cycles
- Participants (2nd cycle)
 - Four classes: Year 9 (two), Year 10, Year 11
 from Decile 1, 4, 5, and 8 schools

(Decile 1 = lowest socio-economic level, 10 = highest)

THE UNIVERSITY OF AUCKLAN

Sample: What are students initially saying?

like those shopping stores that give you out free samples but you only get a little bit and it's kind of a sample

DEPARTMENT OF STATISTIC

What are students initially saying?

- Relationship of samples and populations
- Sampling variability
- Making a claim (n=30 for each gender)

From hands-on to "movies"

Brief description of

SEQUENCE OF INSTRUCTION

Population ideas

Karekare College

- Students selected from 2009 C@S
- 616 students
- 13 variables from C@S survey
- Each card represents a student
- Card colour indicates gender

Karekare College DataCard

Ethnicity	Age	Year level
Transport to school	Time to school	Height
Way of carrying school bag	School bag weight	Popliteal length
Fitness level	Index finger length	Ring finger length

Towards sampling variability: Questions for two situations

- Situation One:
 - Do Karekare College students who walk to school tend to get there faster than Karekare College students who take the bus?
- Situation Two
 - Do the heights of boys at Karekare College tend to be greater than the heights of girls at Karekare College?

Thinking about sampling variability & how to make a call or claim

Samples of bus & walking times to school

Samples of boys and girls heights

Formulating guidelines for making a call

Small shift and large overlap – not prepared to make a call, ('too close to call')

Large shift and small or no overlap
 make the call

How *large* does the shift have to be to make the call?

Formulating guidelines for making a call

Make the call when

At least one group's median is outside the box of the other group.

> otherwise, it's too close to call.

Visualizing the suggested message

- Show animations
- Raise hands to indicate which median is higher.
- E.g.

DEPARTMENT OF STAT

boys higher – boys **up** the scale: **right** hand; girls higher – boys **down** the scale: **left** hand

What are students saying after teaching?

- Sample
 - "It will hopefully tell you what is generally going to happen in the actual population."
- Sampling variability

– "I think that the medians may swap if another sample was taken"

"If I was able to take another sample the medians may move a little but would not swap (the girls would stay higher)"

Results: Prepost tests

Category	Score	Descriptor			
Idiosyncratic (I):	0	No response or makes a statement not based on the data or any feature			
		of the data.			
Irrelevant evidence	2	Makes a call on any feature that appears bigger (e.g., maximum, box			
(IE):		length, UQ).			
Transitional (T):	4	Compares centres, the medians or central 50 percent.			
Towards relevant	6	Makes correct call and fully verbalises one element of evidence and			
evidence(TRE):		partially verbalises some other elements (shift, overlap, decision			
		guideline and sampling variability) for justifying decision.			
Relevant evidence	8	Makes correct call and fully verbalises at least two elements of			
(RE):		evidence.			
Full evidence (FE):	10	Fluent response with four elements of evidence and mentions samples,			
		populations, and level of confidence where appropriate.			

		Post-test Average					
		Ι	IE	Т	TRE	RE	Total
Pre-test	Ι	0	4	9	2	0	15
	IE	0	5	22	16	5	48
Average	Т	0	1	5	7	13	26
	TRE	0	0	0	0	2	2
	RE	0	0	0	0	0	0
Total		0	10	36	25	20	91

What images did students have?

Heights of boys and girls aged 12 from sample of size 30

"Girls tend to be taller than boys

back in the populations"

Christchurch Earthquakes 2010 and 2011

Our World has Changed in Statistics

No longer an emphasis on constructing plots Now an emphasis on *reasoning from data* Small part of that reasoning involves *inference Inferential concepts* are now *accessible* to all students

Resources available: www.censusatschool.org.nz/2009/informal-inference/