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Problem formulation

£ an n-dimensional random vector, with known distribution.

Let F'(.) denote the cumulative distribution function.

r < IR™ decision variables

Tx a hinear function of the decision variables

Probabilistic function

P(Tx = §) = F(Tx)



Probability maximization

max F(Tx) subject to xe X.

Joint probabilistic constraint

min e’z subject to T € X, Fi{Tx) = p.

Equivalent formulation for joint probabilistic constraint:

min ¢’z subject to € X, Tx € L,

where L=1{z|F(z)=p}.

Early application

strategic planning model for the Hungarian energy sector
Prékopa, Ganczer, Dedk, Patyi (1980).



Characterization and convexity statements, Prékopa (1970-1973):

Assume £ has a continuous distribution with a log-concave density function.
= the cumulative distribution function F(.) is log-concave

= the probabilistic function & — F(T'x) is log-concave.



Solution approaches

Feasible direction method in the convex level set £,

Prékopa, Ganczer, Dedk, Patyvi (1980).

Cutting-plane methods approximating the convex level set L.
Prékopa and Szantai (1978), Szantal (1988), Mayer (1998),

Henrion and associates (2000 - ).
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Feasible direction method in the convex level set £,

Prékopa, Ganczer, Dedk, Patyvi (1980).

Cutting-plane methods approximating the convex level set L.
Prékopa and Szantai (1978), Szantal (1988), Mayer (1998),

Henrion and associates (2000 - ).

— Efficiency due to rensing former gradient information.

— Difficulty: gradient computation is noisy.
Practicable implementations require
sophisticated tolerance handling.



Other solution approaches

Uncertain convex prograims,

Campi, Calafiore, Garatti, Caré (2005 - )

Sample Average Approximation, integer programming formmulations,

Ahmed, Luedtke, Nemhauser (2007 -

Cone programming,

Cheng, Giequel and Lisser (2012).
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Classic dual approach

Idea: to build an inner approximation of the level set L.

Definition (Prékopa 1990):  z is a peflicient point iff

( ze £ and

there exists no 2’ € £ such that 2’ < z, 2" # =z.

Given p-eflicient points zq,.... 2.

conv( 21,...,2x ) +IR} is an inner approximation of L.



Solution metods

Prékopa, Vizvari, Badics (1998):
set of peflicient points generated before optimization,

Dentcheva, Prékopa, Ruszezynski (2000):
primal-dual method (cone-generation),

Dentcheva, Lai, Ruszczyriski (2004), Dentcheva and Martinez (20113).



Cone generation Dentcheva, Prékopa, Ruszczynski (2000)
Primal problem formulated by splitting variables:

(P) min ¢’z subjectto Te =2, =xeX, zel.

Lagrangian dual problem obtained by relaxing the constraint Tz = z :

(D) max D(u) where D(u) = min{e’ —u'T)z + minu’z.
m FEX zel
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Cone generation Dentcheva, Prékopa, Ruszczynski (2000)

Primal problem formulated by splitting variables:

(P) min ¢’z subjectto Te =2, =xeX, zel.

Lagrangian dual problem obtained by relaxing the constraint Tz = z :

(D) max D(u) where D(u) = min{e’ —u'T)z + minu’z.
m FEX zel

Solution method:

— from dual viewpoint: cutting-plane method for D(),
— from primal viewpoint: column generation method.

New cuts fcolumns are improving p-eflicient points.

These are found by solving subproblems minu”

ZeEL

Z.
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An alternative dual approach: epi-approximation

dea: to build an inner approximation of the epigraph of the constraint function
Idea: to build an inner imati f the epigraph of the traint functi
(instead of the level set £).

Constraint: Flz) = p
Convex formulation: —-InFi(z) < —lnp
"Hl,.‘_.r

(2 )



An alternative dual approach: epi-approximation

Given points zq,..., 2z, let oy =¢@lzy), ..., dp = dlz).
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Epi-approximation to probability maximization

Primal problem formulated by splitting variables

(P) min ¢(z) = —-InF(z) subjectto Tax=2 =xclX.

Lagrangian dual problem obtained by relaxing the constraint Te = =z :
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Epi-approximation to probability maximization

Primal problem formulated by splitting variables

(P) min ¢(z) = —-InF(z) subjectto Tax=2 =xclX.

Lagrangian dual problem obtained by relaxing the constraint Te = =z :

r - . T . . LT
(D) max D{u) where D(u) = ;ﬂu{u Txe + mzm{q:a{z} i z}.

Solution method:

— from dual viewpoint: cutting-plane method for D(),

— from primal viewpoint: column generation method.

New cuts fcolumns are found by solving subproblems min {¢(z) — u' z}.
z



Epi-approximation computational study

Problems
Normal distribution, dimension up to 15.

Gradients of the distribution function can be computed componentwise:

Az 2 .
I:'I;EL ::I — F(gl,_,,,,_j.'t'_],z-;_p'],---,3“|:;1':| 1{31} (E:].:,...
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Epi-approximation computational study

Problems
Normal distribution, dimension up to 15.

Gradients of the distribution function can be computed componentwise:

ﬂF{;é;-:-1;rL} = Flz1, .0 221, Zig1s o 2 | 7)) fil2i) (i=1,...,n).

Implementation: column generation scheme

Master problem solved by CPLEX simplex, version 12.6.3.

Subproblems solved by a steepest descent method.

ﬂgll {o(z) —uTz} where ¢(z)=—logF(z).

F(z) function values and gradients computed by Genz's code.
A gradient component can be computed from
an appropriate (n-1)-dimensional normal distribution unction value.



Experience

Code proved reliable and robust.
Number of iterations depends on problem dimension,
and on the optimal probability achieveable.

Almost all the computational effort was spent in the Genz subroutine !
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Experience

Code proved reliable and robust.
Number of iterations depends on problem dimension,
and on the optimal probability achieveable.

Almost all the computational effort was spent in the Genz subroutine !

Heuristic adjustment

Aim: balancing different efforts:
— solving and resolving master problem (CPLEX),
solving subproblems (Genz code).

Approximate solution of subproblems.
A single line search made in each steepest descent procedure,
and even this line search 18 approximate.

Outcome

Effort spent in a subproblem substantially decreased

Number of master iterations did not increase significantlv,



Theoretical justification of heuristic adjustment

An ideal convex programming problem
F = minz f(z)
Assume the function f(z) is twice continnously differentiable,

and there are o, w € IR (0 < o < w) such that
ol = V2f(z) = wI (z € IR™).

Here the relation U7 = V means that V' — U is positive semidefinite,



Theoretical justification of heuristic adjustment

An ideal convex programming problem
F = ming f(=z)
Assume the function f(z) is twice continuously differentiable,

and there are o, w € IR (0 < o < w) such that
ol = V2f(z) = wI (z € IR™).

Here the relation U7 = V means that V' — U is positive semidefinite,

A well-known convergence theorem

We minimize f(z) using a steepest descent method.

Starting from z", let z',..., 27, ... denote the iterates.

Then we have

Fz)—F < (1—2y [f(2") - F].



convergence theorem

[(#)-F < (1-8) [(=) —F]

Application to our column generation scheme

New columns are found by solving subproblems

+ ; - T . e
min { ¢(z) —u'z + constant }.



convergence theorem

[(#)-F < (1-8) [(=) —F]

Application to our column generation scheme

New columns are found by solving subproblems

— i (=) — T —
F = min {Ea{z} u' z +f_f:-n:-ﬁtfmti}.

Flz)

Corollary of the theorem
We can find a starting point z" such that

u'z? — ¢(z’) — constant > [1 —(1— f)j] (—JF).

holds with iterate 2/ obtained by j line search iterations.
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Corollary :
We can find a starting point z" such that

w'z? — ¢(z') — constant > [l —(1- E}j] (—=F).

Ty o o '0. 'll
reduced cost of column zi largest possible rednced cost value

Consider the master problem as a LP problem.

Even for a moderately large j, the iterate z/ is
a fairly good improving column in the column generation scheme.



On o,w

Requirement: of < VZd(z) < wl

In the present model, we have  @(z) = —In F(z).

Requirement does not hold for every z.

But it holds over a bounded box.



Illustration

Two-dimenisonal standard normal distribution. covariance = 0.5

Contours of density function Clontours of distribution function



Consider eigenvalues of —V?log F(z).

Larger eigenvalue: w(z). Smaller eigenvalue: a(z).
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Working with gradient estimates

Feasibility study: comparison
of direct cutting-plane method and dual approach

Direct cutting-plane method:

difficult to avoid cutting into the epigraph




Epi-approximation

d(z)
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Epi-approximation




Epi-approximation

d(z)

easy to keep inner approximation in the epigraph.
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Theoretical development for an ideal convex programming problem

We wish to minimize f(z) with a steepest descent method.

al = Vif(z) = wI (z € IR™).

Given iterate z°, let g° = -V f(z").

Computing g° requires excessive effort.
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Working with gradient estimates

Theoretical development for an ideal convex programming problem

. . . o . .
Given o > 0, we can construct realizations of a random vector G satisfying

= o2 o2
and  E([|G°~g°|*) < ollg”’,

A generalization of the convergence theorem
Starting from 2", let z'.... .27, ... denote the iterates.

Then we have

Bf(27)] - F < (] B u[r:lnjj (f (%) - F).

Resemblance to the stochastic approximation family

But present approach builds a model problem.



Working with gradient estimates

Application to probability maximization

. . . i . .
Given o > 0, we can construct realizations of a random vector G satisfying

o ol a2
I6° - g°°) < alg°|*.

Reliable gradient estimates can be constructed using ideas of
Szantal (1976, 1985);

Deak (1980, 1986);

Ambartzumian et al. (1998);

Gassmann (1988): Dedk, Gassmann, Szantai (2002):

Madi-Nagv, Prékopa (2004).



Koszonom a figyelmet!



