XXXII. MAGYAR OPERÁCIÓKUTATÁSI KONFERENCIA CEGLÉD, 2017. JÚNIUS 14-16.

Valószínűség-maximalizálás belső közelítéssel

Fábián Csaba, Csizmás Edit, Drenyovszki Rajmund, Win van Ackooij, Vajnai Tibor, Kovács Lóránt, Szántai Tamás

Outline

Probabilistic optimization problems

Classic and recent solution approaches

A variant of a classic approach: epi-approximation Approximating the epigraph of the probabilistic function

Computational study

Theoretical justification of heuristic adjustments

Working with gradient estimates

Problem formulation

 ξ an n-dimensional random vector, with known distribution.

Let F(.) denote the cumulative distribution function.

 $x \in \mathbb{R}^m$ decision variables

Tx a linear function of the decision variables

Probabilistic function

$$P(Tx \ge \xi) = F(Tx)$$

Probability maximization

 $\max F(Tx)$ subject to $x \in X$.

Joint probabilistic constraint

min
$$c^T x$$
 subject to $x \in X$, $F(Tx) \ge p$.

Equivalent formulation for joint probabilistic constraint:

min
$$c^T x$$
 subject to $x \in X$, $Tx \in \mathcal{L}$,

where

$$\mathcal{L} = \{ z \mid F(z) \ge p \}.$$

Early application

strategic planning model for the Hungarian energy sector Prékopa, Ganczer, Deák, Patyi (1980).

Characterization and convexity statements, Prékopa (1970-1973):

Assume ξ has a continuous distribution with a log-concave density function.

- \Rightarrow the cumulative distribution function F(.) is log-concave
- \Rightarrow the probabilistic function $x \mapsto F(Tx)$ is log-concave.

Solution approaches

Feasible direction method in the convex level set \mathcal{L} .

Prékopa, Ganczer, Deák, Patyi (1980).

Cutting-plane methods approximating the convex level set \mathcal{L} .

Prékopa and Szántai (1978), Szántai (1988), Mayer (1998),

Henrion and associates (2000 -).

Solution approaches

Feasible direction method in the convex level set \mathcal{L} .

Prékopa, Ganczer, Deák, Patyi (1980).

Cutting-plane methods approximating the convex level set \mathcal{L} .

Prékopa and Szántai (1978), Szántai (1988), Mayer (1998),

Henrion and associates (2000 -).

- Efficiency due to reusing former gradient information.
- Difficulty: gradient computation is noisy.
 Practicable implementations require sophisticated tolerance handling.

Other solution approaches

Uncertain convex programs,

Campi, Calafiore, Garatti, Caré (2005 -)

Sample Average Approximation, integer programming formulations,

Ahmed, Luedtke, Nemhauser (2007 -)

Cone programming,

Cheng, Gicquel and Lisser (2012).

Classic dual approach

Idea: to build an inner approximation of the level set \mathcal{L} .

Classic dual approach

Idea: to build an inner approximation of the level set \mathcal{L} .

Definition (Prékopa 1990): z is a p-efficient point iff

$$\left\{ \begin{array}{l} z\in\mathcal{L} \quad \text{and} \\ \\ \text{there exists no} \ z'\in\mathcal{L} \ \text{such that} \ z'\leq z,\, z'\neq z. \end{array} \right.$$

Classic dual approach

Idea: to build an inner approximation of the level set \mathcal{L} .

Definition (Prékopa 1990): z is a p-efficient point iff

$$\left\{ \begin{array}{l} z\in\mathcal{L} \quad \text{and} \\ \\ \text{there exists no} \ z'\in\mathcal{L} \ \text{such that} \ z'\leq z,\, z'\neq z. \end{array} \right.$$

Given p-efficient points z_1, \dots, z_k ,

conv(z_1, \ldots, z_k) + \mathbb{R}^n_+ is an inner approximation of \mathcal{L} .

Solution metods

Prékopa, Vizvári, Badics (1998): set of p-efficient points generated before optimization,

Dentcheva, Prékopa, Ruszczyński (2000): primal-dual method (cone-generation),

Dentcheva, Lai, Ruszczyński (2004), Dentcheva and Martinez (2013).

Cone generation Dentcheva, Prékopa, Ruszczyński (2000)

Primal problem formulated by splitting variables:

(P) min
$$c^T x$$
 subject to $Tx = z$, $x \in X$, $z \in \mathcal{L}$.

Lagrangian dual problem obtained by relaxing the constraint Tx = z:

(D)
$$\max_{\boldsymbol{u}} D(\boldsymbol{u})$$
 where $D(\boldsymbol{u}) = \min_{\boldsymbol{x} \in X} (\boldsymbol{c}^T - \boldsymbol{u}^T T) \boldsymbol{x} + \min_{\boldsymbol{z} \in \mathcal{L}} \boldsymbol{u}^T \boldsymbol{z}$.

Cone generation Dentcheva, Prékopa, Ruszczyński (2000)

Primal problem formulated by splitting variables:

(P) min
$$c^T x$$
 subject to $Tx = z$, $x \in X$, $z \in \mathcal{L}$.

Lagrangian dual problem obtained by relaxing the constraint Tx = z:

$$(\mathcal{D}) \quad \max_{\boldsymbol{u}} \ D(\boldsymbol{u}) \quad \text{where} \quad D(\boldsymbol{u}) = \min_{\boldsymbol{x} \in X} (\boldsymbol{c}^T - \boldsymbol{u}^T T) \boldsymbol{x} \ + \ \min_{\boldsymbol{z} \in \mathcal{L}} \boldsymbol{u}^T \boldsymbol{z}.$$

Solution method:

- from dual viewpoint: cutting-plane method for D(),
- from primal viewpoint: column generation method.

Cone generation Dentcheva, Prékopa, Ruszczyński (2000)

Primal problem formulated by splitting variables:

(P) min
$$c^T x$$
 subject to $Tx = z$, $x \in X$, $z \in \mathcal{L}$.

Lagrangian dual problem obtained by relaxing the constraint Tx = z:

(D)
$$\max_{\boldsymbol{u}} D(\boldsymbol{u})$$
 where $D(\boldsymbol{u}) = \min_{\boldsymbol{x} \in X} (\boldsymbol{c}^T - \boldsymbol{u}^T T) \boldsymbol{x} + \min_{\boldsymbol{z} \in \mathcal{L}} \boldsymbol{u}^T \boldsymbol{z}$.

Solution method:

- from dual viewpoint: cutting-plane method for D(),
- from primal viewpoint: column generation method.

New cuts/columns are improving p-efficient points.

These are found by solving subproblems $\min_{z \in \mathcal{L}} u^T z$.

Idea: to build an inner approximation of the epigraph of the constraint function (instead of the level set \mathcal{L}).

Idea: to build an inner approximation of the epigraph of the constraint function (instead of the level set \mathcal{L}).

Constraint:

$$F(z) \ge p$$

Idea: to build an inner approximation of the epigraph of the constraint function (instead of the level set \mathcal{L}).

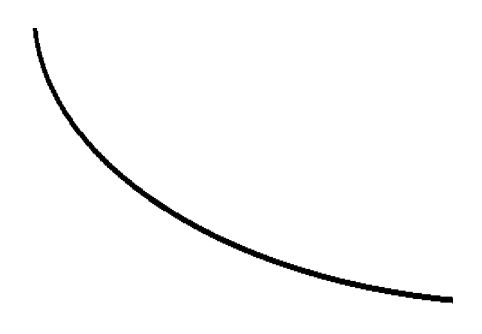
Constraint:
$$F(z) \ge p$$

Convex formulation:
$$-\ln F(z) \le -\ln p$$

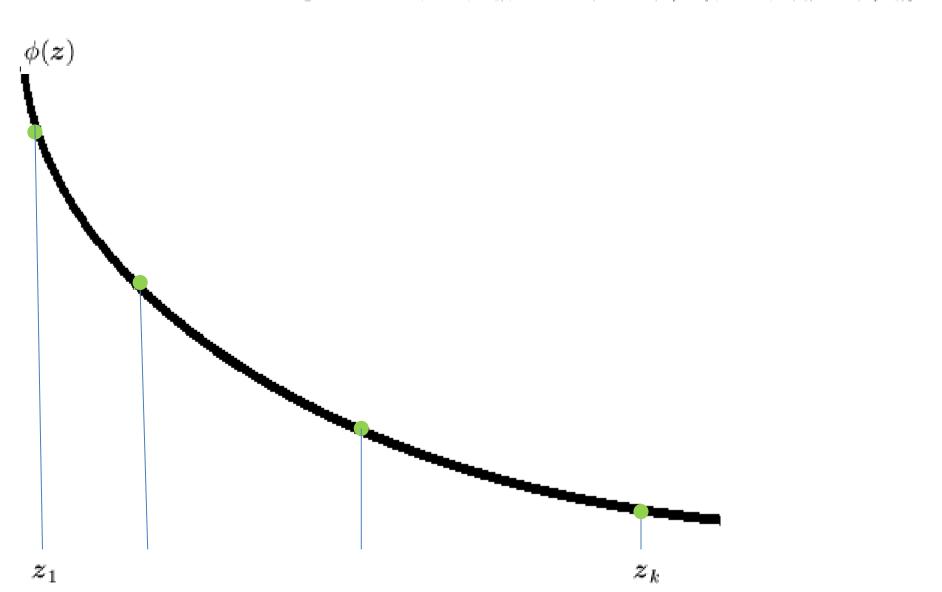
Idea: to build an inner approximation of the epigraph of the constraint function (instead of the level set \mathcal{L}).

Constraint:
$$F(z) \ge p$$

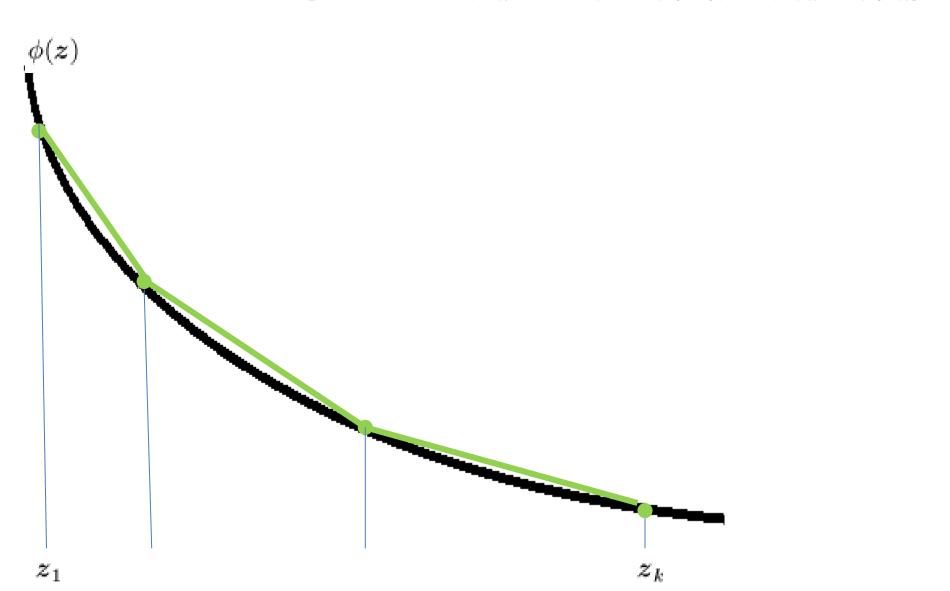
Convex formulation:
$$\underbrace{-\ln F(z)}_{\phi(z)} \le -\ln p$$



Given points z_1, \ldots, z_k , let $\phi_1 = \phi(z_1), \ldots, \phi_k = \phi(z_k)$.



Given points z_1, \ldots, z_k , let $\phi_1 = \phi(z_1), \ldots, \phi_k = \phi(z_k)$.



Epi-approximation to probability maximization

Primal problem formulated by splitting variables

$$(\mathcal{P})$$
 min $\phi(z) = -\ln F(z)$ subject to $Tx = z$, $x \in X$.

Lagrangian dual problem obtained by relaxing the constraint Tx = z:

$$(\mathcal{D}) \qquad \max_{\boldsymbol{u}} \ D(\boldsymbol{u}) \quad \text{where} \quad D(\boldsymbol{u}) = \min_{\boldsymbol{x} \in X} \boldsymbol{u}^T T \boldsymbol{x} \ + \ \min_{\boldsymbol{z}} \left\{ \phi(\boldsymbol{z}) - \boldsymbol{u}^T \boldsymbol{z} \right\}.$$

Epi-approximation to probability maximization

Primal problem formulated by splitting variables

(P)
$$\min \phi(z) = -\ln F(z)$$
 subject to $Tx = z$, $x \in X$.

Lagrangian dual problem obtained by relaxing the constraint Tx = z:

$$(\mathcal{D}) \qquad \max_{\boldsymbol{u}} \ D(\boldsymbol{u}) \quad \text{where} \quad D(\boldsymbol{u}) = \min_{\boldsymbol{x} \in X} \boldsymbol{u}^T T \boldsymbol{x} \ + \ \min_{\boldsymbol{z}} \left\{ \phi(\boldsymbol{z}) - \boldsymbol{u}^T \boldsymbol{z} \right\}.$$

Solution method:

- from dual viewpoint: cutting-plane method for D(),
- from primal viewpoint: column generation method.

New cuts/columns are found by solving subproblems $\min_{z} \{\phi(z) - u^T z\}$.

Epi-approximation computational study

Problems

Normal distribution, dimension up to 15.

Gradients of the distribution function can be computed componentwise:

$$\frac{\partial F(z_1, \dots, z_n)}{\partial z_i} = F(z_1, \dots, z_{i-1}, z_{i+1}, \dots, z_n \mid z_i) \ f_i(z_i) \qquad (i = 1, \dots, n).$$

Epi-approximation computational study

Problems

Normal distribution, dimension up to 15.

Gradients of the distribution function can be computed componentwise:

$$\frac{\partial F(z_1, \dots, z_n)}{\partial z_i} = F(z_1, \dots, z_{i-1}, z_{i+1}, \dots, z_n \mid z_i) f_i(z_i)$$
 $(i = 1, \dots, n).$

Implementation: column generation scheme

Master problem solved by CPLEX simplex, version 12.6.3.

Subproblems solved by a steepest descent method.

$$\min_{\boldsymbol{z}} \left\{ \phi(\boldsymbol{z}) - \boldsymbol{u}^T \boldsymbol{z} \right\} \quad \text{where} \quad \phi(\boldsymbol{z}) = -\log F(\boldsymbol{z}).$$

F(z) function values and gradients computed by Genz's code.

A gradient component can be computed from

an appropriate (n-1)-dimensional normal distribution function value.

Experience

Code proved reliable and robust.

Number of iterations depends on problem dimension, and on the optimal probability achieveable.

Almost all the computational effort was spent in the Genz subroutine!

Experience

Code proved reliable and robust.

Number of iterations depends on problem dimension, and on the optimal probability achieveable.

Almost all the computational effort was spent in the Genz subroutine!

Heuristic adjustment

Aim: balancing different efforts:

- solving and resolving master problem (CPLEX),
- solving subproblems (Genz code).

Approximate solution of subproblems.

A single line search made in each steepest descent procedure, and even this line search is approximate.

Experience

Code proved reliable and robust.

Number of iterations depends on problem dimension, and on the optimal probability achieveable.

Almost all the computational effort was spent in the Genz subroutine!

Heuristic adjustment

Aim: balancing different efforts:

- solving and resolving master problem (CPLEX),
- solving subproblems (Genz code).

Approximate solution of subproblems.

A single line search made in each steepest descent procedure, and even this line search is approximate.

Outcome

Effort spent in a subproblem substantially decreased

Number of master iterations did not increase significantly.

Theoretical justification of heuristic adjustment

An ideal convex programming problem

$$\mathcal{F} = \min_{\boldsymbol{z}} f(\boldsymbol{z})$$

Assume the function f(z) is twice continuously differentiable,

and there are $\alpha, \omega \in \mathbb{R}$ $(0 < \alpha \le \omega)$ such that

$$\alpha I \leq \nabla^2 f(z) \leq \omega I \qquad (z \in \mathbb{R}^n).$$

Here the relation $U \leq V$ means that V-U is positive semidefinite.

Theoretical justification of heuristic adjustment

An ideal convex programming problem

$$\mathcal{F} = \min_{\boldsymbol{z}} f(\boldsymbol{z})$$

Assume the function f(z) is twice continuously differentiable,

and there are $\alpha, \omega \in \mathbb{R}$ $(0 < \alpha \leq \omega)$ such that

$$\alpha I \leq \nabla^2 f(z) \leq \omega I \qquad (z \in \mathbb{R}^n).$$

Here the relation $U \leq V$ means that V - U is positive semidefinite.

A well-known convergence theorem

We minimize f(z) using a steepest descent method.

Starting from z^0 , let z^1, \ldots, z^j, \ldots denote the iterates.

Then we have

$$f(z^j) - \mathcal{F} \leq (1 - \frac{\alpha}{\omega})^j [f(z^0) - \mathcal{F}].$$

convergence theorem

$$f(z^{j}) - \mathcal{F} \leq (1 - \frac{\alpha}{\omega})^{j} [f(z^{0}) - \mathcal{F}]$$

Application to our column generation scheme

New columns are found by solving subproblems

$$\min_{\boldsymbol{z}} \left\{ \phi(\boldsymbol{z}) - \boldsymbol{u}^T \boldsymbol{z} + \text{constant} \right\}.$$

convergence theorem

$$f(z^{j}) - \mathcal{F} \leq (1 - \frac{\alpha}{\omega})^{j} [f(z^{0}) - \mathcal{F}]$$

Application to our column generation scheme

New columns are found by solving subproblems

$$\mathcal{F} = \min_{\boldsymbol{z}} \left\{ \underbrace{\phi(\boldsymbol{z}) - \boldsymbol{u}^T \boldsymbol{z} + \mathrm{constant}}_{f(\boldsymbol{z})} \right\}.$$

Corollary of the theorem

We can find a starting point z^0 such that

$$u^T z^j - \phi(z^j) - \text{constant} \ge \left[1 - \left(1 - \frac{\alpha}{\omega}\right)^j\right] (-\mathcal{F}).$$

holds with iterate z^{j} obtained by j line search iterations.

Corollary:

We can find a starting point z^0 such that

$$u^T z^j - \phi(z^j) - \text{constant} \ge \left[1 - \left(1 - \frac{\alpha}{\omega}\right)^j\right] (-\mathcal{F}).$$

Corollary:

We can find a starting point z^0 such that

$$\underbrace{\boldsymbol{u}^T\boldsymbol{z}^j - \phi(\boldsymbol{z}^j) - \text{constant}}_{\text{reduced a set of solven as:}} \geq \left[1 - \left(1 - \frac{\alpha}{\omega}\right)^j\right] \underbrace{(-\mathcal{F})}_{\text{lowest rescaled a set of solven decay as:}}$$

reduced cost of column z^{j}

largest possible reduced cost value

Consider the master problem as a LP problem.

Corollary:

We can find a starting point z^0 such that

$$\underbrace{u^T z^j - \phi(z^j) - \text{constant}}_{\text{reduced cost of column } z^j} \ge \left[1 - \left(1 - \frac{\alpha}{\omega}\right)^j\right] (-\mathcal{F}).$$

Consider the master problem as a LP problem.

Even for a moderately large j, the iterate z^j is a fairly good improving column in the column generation scheme.

On α, ω

Requirement:
$$\alpha I \leq \nabla^2 \phi(z) \leq \omega I$$

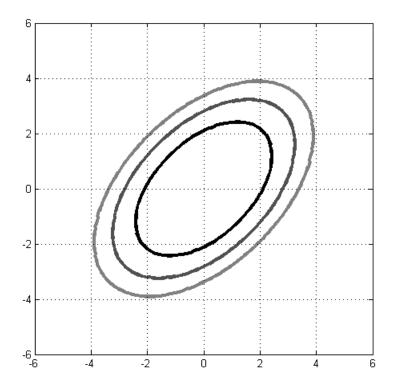
In the present model, we have $\phi(z) = -\ln F(z)$.

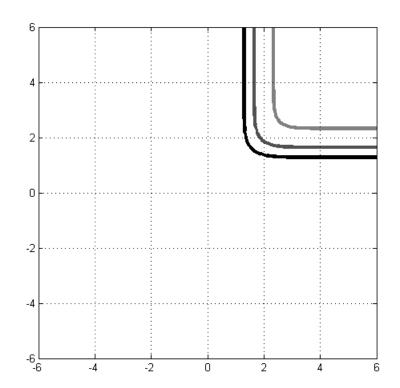
Requirement does not hold for every z.

But it holds over a bounded box.

Illustration

Two-dimensional standard normal distribution, covariance = 0.5





Contours of density function

Contours of distribution function

Consider eigenvalues of $-\nabla^2 \log F(z)$.

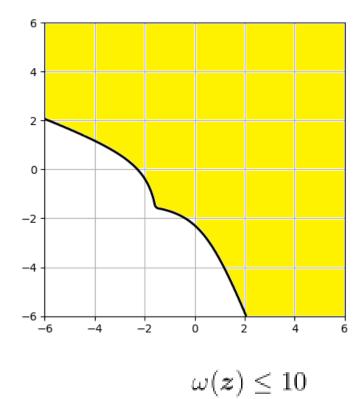
Larger eigenvalue: $\omega(z)$. Smaller eigenvalue: $\alpha(z)$.

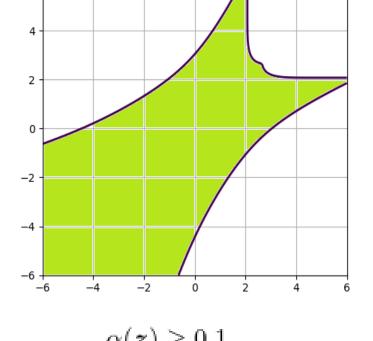
Consider eigenvalues of $-\nabla^2 \log F(z)$.

Larger eigenvalue: $\omega(z)$.

Smaller eigenvalue: $\alpha(z)$.

Level sets of eigenvalue functions



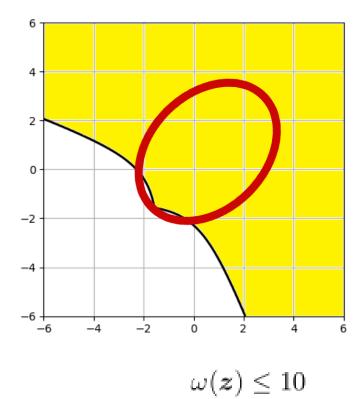


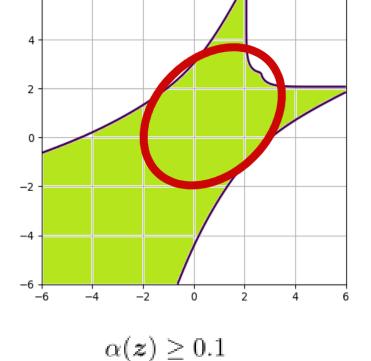
Consider eigenvalues of $-\nabla^2 \log F(z)$.

Larger eigenvalue: $\omega(z)$.

Smaller eigenvalue: $\alpha(z)$.

Level sets of eigenvalue functions





Feasibility study: comparison of direct cutting-plane method and dual approach

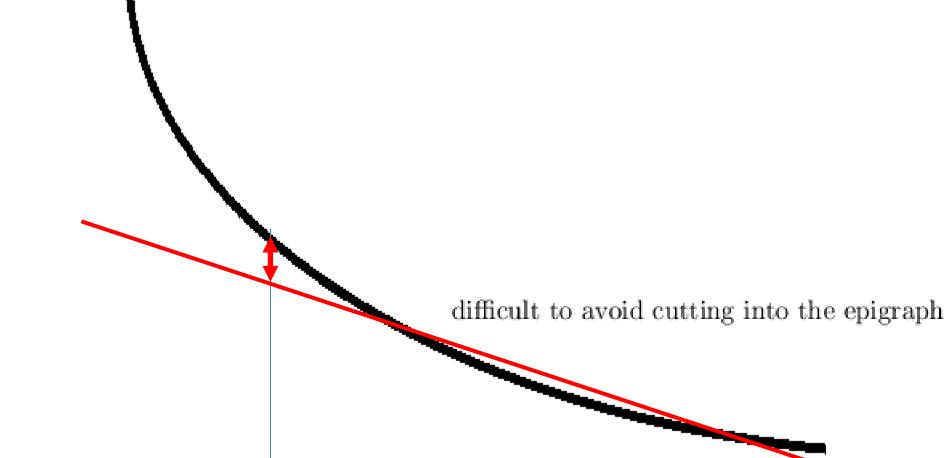
Feasibility study: comparison of direct cutting-plane method and dual approach

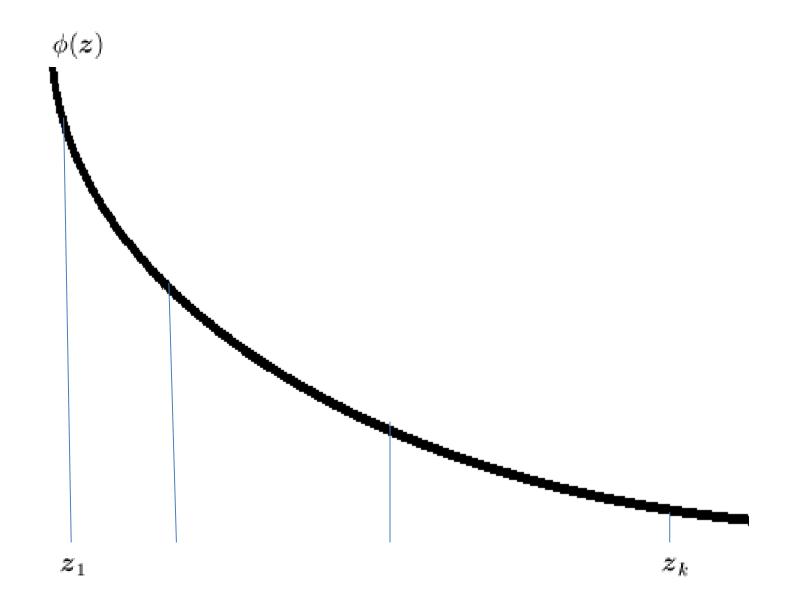
Direct cutting-plane method:

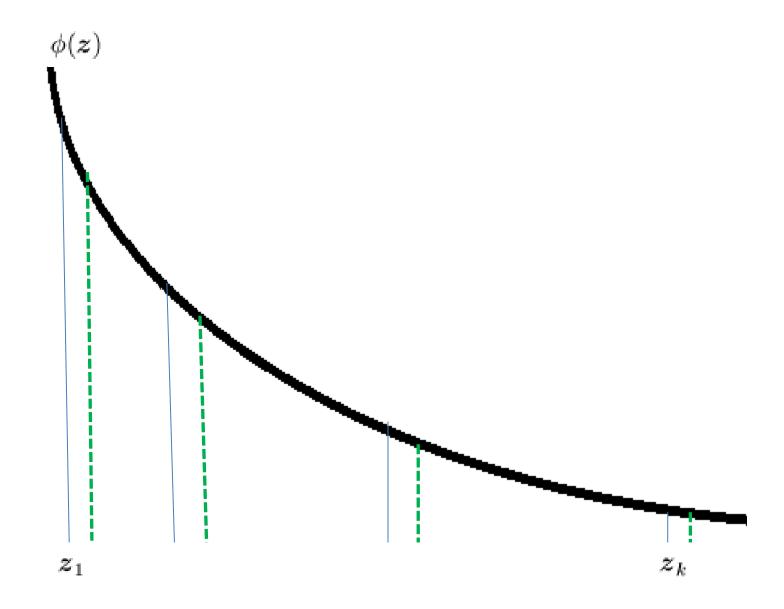
$$\phi(z) = -\ln F(z).$$

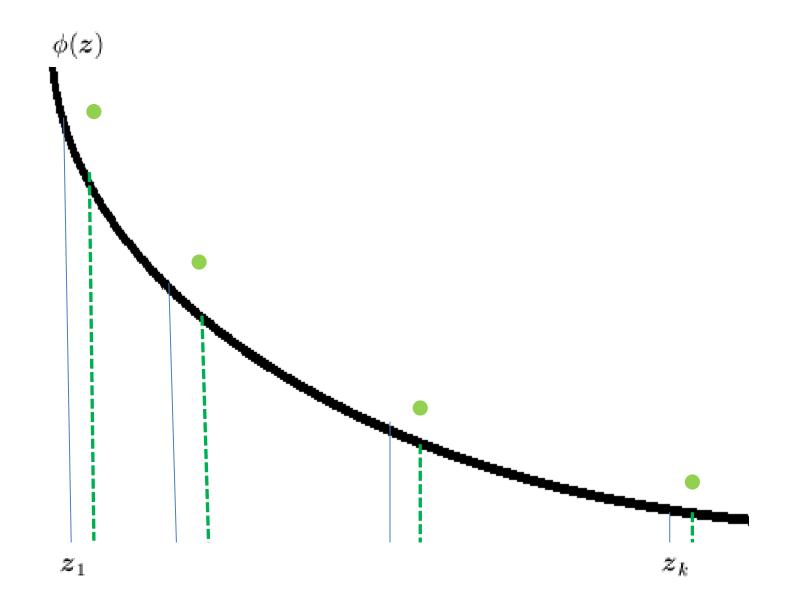
Feasibility study: comparison of direct cutting-plane method and dual approach

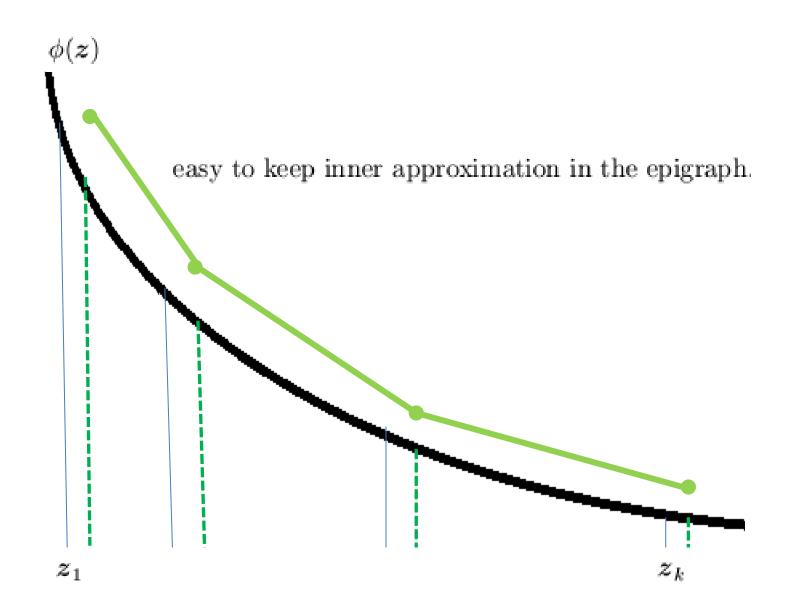
Direct cutting-plane method:











Theoretical development for an ideal convex programming problem

We wish to minimize f(z) with a steepest descent method.

$$\alpha I \leq \nabla^2 f(z) \leq \omega I \qquad (z \in \mathbb{R}^n).$$

Theoretical development for an ideal convex programming problem

We wish to minimize f(z) with a steepest descent method.

$$\alpha I \leq \nabla^2 f(z) \leq \omega I \qquad (z \in \mathbb{R}^n).$$

Given iterate z° , let $g^{\circ} = -\nabla f(z^{\circ})$.

Computing g° requires excessive effort.

Theoretical development for an ideal convex programming problem

We wish to minimize f(z) with a steepest descent method.

$$\alpha I \leq \nabla^2 f(z) \leq \omega I \qquad (z \in \mathbb{R}^n).$$

Given iterate z° , let $g^{\circ} = -\nabla f(z^{\circ})$.

Computing g° requires excessive effort.

Given $\sigma > 0$, we can construct realizations of a random vector \mathbf{G}° satisfying

$$\mathrm{E}\left(\boldsymbol{G}^{\circ}\right) = \boldsymbol{g}^{\circ} \quad \text{and} \quad \mathrm{E}\left(\left\|\boldsymbol{G}^{\circ} - \boldsymbol{g}^{\circ}\right\|^{2}\right) \leq \sigma \left\|\boldsymbol{g}^{\circ}\right\|^{2}.$$

Theoretical development for an ideal convex programming problem

Given $\sigma > 0$, we can construct realizations of a random vector \mathbf{G}° satisfying

$$\mathrm{E}\left(\boldsymbol{G}^{\circ}\right) = \boldsymbol{g}^{\circ} \quad \text{and} \quad \mathrm{E}\left(\left\|\boldsymbol{G}^{\circ} - \boldsymbol{g}^{\circ}\right\|^{2}\right) \leq \sigma \left\|\boldsymbol{g}^{\circ}\right\|^{2}.$$

A generalization of the convergence theorem

Starting from z^0 , let z^1, \ldots, z^j, \ldots denote the iterates.

Then we have

$$\mathrm{E}\left[f\left(\boldsymbol{z}^{j}\right)\right]-\mathcal{F} \leq \left(1-\frac{\alpha}{\omega(\sigma+1)}\right)^{j}\left(f\left(\boldsymbol{z}^{0}\right)\right)-\mathcal{F}\right).$$

Theoretical development for an ideal convex programming problem

Given $\sigma > 0$, we can construct realizations of a random vector \mathbf{G}° satisfying

$$\mathrm{E}\left(\boldsymbol{G}^{\circ}\right) = \boldsymbol{g}^{\circ} \quad \text{and} \quad \mathrm{E}\left(\left\|\boldsymbol{G}^{\circ} - \boldsymbol{g}^{\circ}\right\|^{2}\right) \leq \sigma \left\|\boldsymbol{g}^{\circ}\right\|^{2}.$$

A generalization of the convergence theorem

Starting from z^0 , let z^1, \ldots, z^j, \ldots denote the iterates.

Then we have

$$\mathrm{E}\left[f\left(\boldsymbol{z}^{j}\right)\right]-\mathcal{F} \leq \left(1-\frac{\alpha}{\omega(\sigma+1)}\right)^{j}\left(f\left(\boldsymbol{z}^{0}\right)\right)-\mathcal{F}\right).$$

Resemblance to the stochastic approximation family

But present approach builds a model problem.

Application to probability maximization

Given $\sigma > 0$, we can construct realizations of a random vector \mathbf{G}° satisfying

$$\mathrm{E}\left(\boldsymbol{G}^{\circ}\right) = \boldsymbol{g}^{\circ} \quad \text{and} \quad \mathrm{E}\left(\left\|\boldsymbol{G}^{\circ} - \boldsymbol{g}^{\circ}\right\|^{2}\right) \leq \sigma \left\|\boldsymbol{g}^{\circ}\right\|^{2}.$$

Reliable gradient estimates can be constructed using ideas of

Szántai (1976, 1985);

Deák (1980, 1986);

Ambartzumian et al. (1998);

Gassmann (1988); Deák, Gassmann, Szántai (2002);

Mádi-Nagy, Prékopa (2004).

Köszönöm a figyelmet!